Advertisement

Analysis of Inelastic Behavior for High Temperature Materials and Structures

  • Konstantin Naumenko
  • Holm Altenbach
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 64)

Abstract

This review provides a current status in modeling and analysis of structures for high-temperature applications. Basic features of inelastic behavior of heat resistant alloys are discussed. Typical responses for stationary and varying loading and temperature are presented and classified. Microstructural features and microstructural changes in the course of inelastic deformation at high temperature are discussed. The state of the art on material modeling and structural analysis in the inelastic range at high temperature is resented.

Keywords

Creep Low cycle fatigue Damage mechanics Length scales Temporal scales Structural analysis 

References

  1. Abe F (2008) Strengthening mechanisms in steel for creep and creep rupture. In: Abe F, Kern TU, Viswanathan R (eds) Creep-esistant steels. Woodhead Publishing, Cambridge, pp 279–304Google Scholar
  2. Abe F (2009) Analysis of creep rates of tempered martensitic 9 % Cr steel based on microstructure evolution. Mater Sci Eng A 510:64–69Google Scholar
  3. Aifantis KE, Weygand D, Motz C, Nikitas N, Zaiser M (2012) Modeling microbending of thin films through discrete dislocation dynamics, continuum dislocation theory, and gradient plasticity. J Mat Res 27:612–618Google Scholar
  4. Aktaa J, Petersen C (2009) Challenges in the constitutive modeling of the thermo-mechanical deformation and damage behavior of eurofer 97. Eng Fract Mech 76(10):1474–1484Google Scholar
  5. Altenbach H, Eremeyev V (2014) Strain rate tensors and constitutive equations of inelastic micropolar materials. Int J Plast 63:3–17Google Scholar
  6. Altenbach H, Naumenko K (1997) Creep bending of thin-walled shells and plates by consideration of finite deflections. Comput Mech 19:490–495zbMATHGoogle Scholar
  7. Altenbach H, Naumenko K (2002) Shear correction factors in creep-damage analysis of beams, plates and shells. JSME Int J Series A 45:77–83Google Scholar
  8. Altenbach H, Morachkovsky O, Naumenko K, Sychov A (1997) Geometrically nonlinear bending of thin-walled shells and plates under creep-damage conditions. Arch Appl Mech 67:339–352zbMATHGoogle Scholar
  9. Altenbach H, Altenbach J, Naumenko K (1998) Ebene Flächentragwerke. Springer, BerlinzbMATHGoogle Scholar
  10. Altenbach H, Breslavsky D, Morachkovsky O, Naumenko K (2000a) Cyclic creep damage in thin-walled structures. J Strain Anal Eng Des 35(1):1–11Google Scholar
  11. Altenbach H, Kolarow G, Morachkovsky O, Naumenko K (2000b) On the accuracy of creep-damage predictions in thinwalled structures using the finite element method. Comput Mech 25:87–98zbMATHGoogle Scholar
  12. Altenbach H, Kushnevsky V, Naumenko K (2001) On the use of solid- and shell-type finite elements in creep-damage predictions of thinwalled structures. Arch Appl Mech 71:164–181zbMATHGoogle Scholar
  13. Altenbach H, Huang C, Naumenko K (2002) Creep damage predictions in thin-walled structures by use of isotropic and anisotropic damage models. J Strain Anal Eng Des 37(3):265–275Google Scholar
  14. Altenbach H, Naumenko K, Zhilin P (2003) A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Continuum Mech Thermodyn 15:539–570zbMATHMathSciNetGoogle Scholar
  15. Altenbach H, Naumenko K, Pylypenko S, Renner B (2007) Influence of rotary inertia on the fiber dynamics in homogeneous creeping flows. ZAMM J Appl Math Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 87(2):81–93zbMATHMathSciNetGoogle Scholar
  16. Altenbach H, Naumenko K, Gorash Y (2008) Creep analysis for a wide stress range based on stress relaxation experiments. Int J Mod Phys B 22(31n32):5413–5418Google Scholar
  17. Altenbach H, Kozhar S, Naumenko K (2013) Modeling creep damage of an aluminum-silicon eutectic alloy. Int J Damage Mech 22(5):683–698Google Scholar
  18. Altenbach J, Altenbach H, Naumenko K (2004) Egde effects in moderately thick plates under creep damage conditions. Tech Mech 24(3–4):254–263Google Scholar
  19. Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46(16):5611–5626Google Scholar
  20. Berger C, Scholz A, Mueller F, Schwienherr M (2008) Creep fatigue behaviour and crack growth of steels. In: Abe F, Kern TU, Viswanathan R (eds) Creep-resistant steels. Woodhead Publishing, Cambridge, pp 446–471Google Scholar
  21. Bernhardt EO, Hanemann H (1938) Über den Kriechvorgang bei dynamischer Belastung und den Begriff der dynamischen Kriechfestigkeit. Z für Metallkunde 30(12):401–409Google Scholar
  22. Betten J (1976) Plastic anisotropy and Bauschinger-effect—general formulation and comparison with experimental yield curves. Acta Mech 25(1–2):79–94Google Scholar
  23. Betten J (2001) Kontinuumsmechanik. Springer, BerlinzbMATHGoogle Scholar
  24. Betten J (2005) Creep Mechanics. Springer, BerlinGoogle Scholar
  25. Betten J, El-Magd E, Meydanli SC, Palmen P (1995) Untersuchnung des anisotropen Kriechverhaltens vorgeschädigter Werkstoffe am austenitischen Stahl X8CrNiMoNb 1616. Arch Appl Mech 65:121–132Google Scholar
  26. Bielski J, Skrzypek J (1989) Failure modes of elastic-plastic curved tubes under external pressure with in-plane bending. Int J Mech Sci 31:435–458Google Scholar
  27. Blum W (2001) Creep of crystalline materials: experimental basis, mechanisms and models. Mater Sci Eng A 319:8–15Google Scholar
  28. Blum W (2008) Mechanisms of creep deformation in steel. In: Abe F, Kern TU, Viswanathan R (eds) Creep-resistant steels. Woodhead Publishing, Cambridge, pp 365–402Google Scholar
  29. Boyle JT, Spence J (1983) Stress analysis for creep. Butterworth, LondonGoogle Scholar
  30. Bunch JO, McEvily AJ (1987) On the behavior of ferritic steels subjected to load controlled cycling at elevated temperatures. In: Rie KT (ed) Cycle low fatigue and elasto-plastic behaviour of materials, Springer, Berlin, pp 252–257Google Scholar
  31. da C Andrade EN (1910) On the viscous flow of metals, and allied phenomena. Proc R Soc Lond ALXXXIV:1–12Google Scholar
  32. Cailletaud G, Forest S, Jeulin D, Feyel F, Galliet I, Mounoury V, Quilici S (2003) Some elements of microstructural mechanics. Comput Mater Sci 27(3):351–374Google Scholar
  33. Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive equations. Int J Plast 24:1642–1693zbMATHGoogle Scholar
  34. Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34(6):1679–1682Google Scholar
  35. Coffin LF (1954) A study of the effects of cyclic thermal stresses on a ductile metal. Trans ASME 76:931–950Google Scholar
  36. Colombo F, Mazza E, Holdsworth SR, Skelton RP (2008) Thermo-mechanical fatigue tests on uniaxial and component-like 1CrMoV rotor steel specimens. Int J Fatigue 30:241–248zbMATHGoogle Scholar
  37. Cui L, Wang P (2014) Two lifetime estimation models for steam turbine components under thermomechanical creep-fatigue loading. Int J Fatigue 59:129–136Google Scholar
  38. Cui L, Scholz A, von Hartrott P, Schlesinger M (2009) Entwicklung von Modellen zur Lebensdauervorhersage von Kraftwerksbauteilen unter thermisch-mechanischer Kriechermüdungsbeanspruchung. Abschlussbericht, AVIF Vorhaben Nr. 895, FVV, Heft 888, Frankfurt am MainGoogle Scholar
  39. Cui L, Wang P, Hoche H, Scholz A, Berger C (2013) The influence of temperature transients on the lifetime of modern high-chromium rotor steel under service-type loading. Mater Sci Eng A 560:767–780Google Scholar
  40. Devulder A, Aubry D, Puel G (2010) Two-time scale fatigue modelling: application to damage. Comput Mech 45(6):637–646zbMATHGoogle Scholar
  41. Dyson BF, McLean M (1998) Microstructural evolution and its effects on the creep performance of high temperature alloys. In: Strang A, Cawley J, Greenwood GW (eds) Microstructural stability of creep resistant alloys for high temperature plant applications. Cambridge University Press, Cambridge, pp 371–393Google Scholar
  42. Dyson BF, McLean M (2001) Micromechanism-quantification for creep constitutive equations. In: Murakami S, Ohno N (eds) IUTAM symposium on creep in structures. Kluwer, Dordrecht, pp 3–16Google Scholar
  43. El-Magd E, Nicolini G (1999) Creep behaviour and microstructure of dispersion-strengthened pm-aluminium materials at elevated temperatures. In: Mughrabi H, Gottstein G, Mecking H, Riedel H, Tobolski J (eds) Microstructure and mechanical properties of metallic high-temperature materials: research Report/DFG. Wiley-VCH, Weinheim, pp 445–464Google Scholar
  44. El-Magd E, Betten J, Palmen P (1996) Auswirkung der Schädigungsanisotropie auf die Lebensdauer von Stählen bei Zeitstandbeanspruchung. Mat-wiss u Werkstofftechn 27:239–245Google Scholar
  45. Eringen AC (2001) Microcontinuum field theories, vol II: Fluent Media. Springer, New YorkGoogle Scholar
  46. Estrin Y (1996) Dislocation-density-related constitutive modelling. In: Krausz AS, Krausz K (eds) Unified constitutive laws of plastic deformation. Academic Press, San Diego, pp 69–104Google Scholar
  47. Faruque MO, Zaman M, Hossain MI (1996) Creep constitutive modelling of an aluminium alloy under multiaxial and cyclic loading. Int J of Plast 12(6):761–780zbMATHGoogle Scholar
  48. Fish J, Bailakanavar M, Powers L, Cook T (2012) Multiscale fatigue life prediction model for heterogeneous materials. Int J Numer Meth Eng 91(10):1087–1104MathSciNetGoogle Scholar
  49. Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:295–361Google Scholar
  50. Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech 135(3):117–131Google Scholar
  51. Forest S, Cailletaud G, Sievert R (1997) A cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch Mech 49:705–736zbMATHMathSciNetGoogle Scholar
  52. Fournier B, Sauzay M, Caös C, Noblecourt M, Mottot M, Bougault A, Rabeau V, Pineau A (2008) Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part II: effect of compressive holding period on fatigue lifetime. Int J Fatigue 30(4):663–676Google Scholar
  53. Fournier B, Dalle F, Sauzay M, Longour J, Salvi M, Caës C, Tournié I, Giroux PF, Kim SH (2011) Comparison of various 9–12 % Cr steels under fatigue and creep-fatigue loadings at high temperature. Mater Sci Eng A 528(22):6934–6945Google Scholar
  54. François D, Pineau A, Zaoui A (2012) Mechanical behaviour of materials, mechanical behaviour of materials, Micro- and macroscopic constitutive behaviour, vol 1. Springer, BerlinGoogle Scholar
  55. Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon, OxfordGoogle Scholar
  56. Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity-I. Theory. J Mech Phys Solids 47(6):1239–1263zbMATHMathSciNetGoogle Scholar
  57. Gariboldi E, Casaro F (2007) Intermediate temperature creep behaviour of a forged Al–Cu–Mg–Si–Mn alloy. Mater Sci Eng A 462(1):384–388Google Scholar
  58. van der Giessen E, Tvergaard V (1995) Development of final creep failure in polycrystalline aggregates. Acta Metall Mater 42:959–973Google Scholar
  59. van der Giessen E, van der Burg MWD, Needleman A, Tvergaard V (1995) Void growth due to creep and grain boundary diffusion at high triaxialities. J Mech Phys Solids 43:123–165zbMATHMathSciNetGoogle Scholar
  60. Gooch DJ (2003) Remnant creep life prediction in ferritic materials. In: Saxena A (ed) Comprehensive structural integrity, Creep and high-temperature failure, vol 5. Elsevier, Amsterdam, pp 309–359Google Scholar
  61. Gorash Y, Altenbach H, Lvov G (2012) Modelling of high-temperature inelastic behaviour of the austenitic steel AISI type 316 using a continuum damage mechanics approach. J Strain Anal Eng Des 47(4):229–243Google Scholar
  62. Hald J (1998) Service performance of a 12crmov steam pipe steel. In: Strang A, Cawley J, Greenwood GW (eds) Microstructural stability of creep resistant alloys for high temperature plant applications. Cambridge University Press, Cambridge, pp 173–184Google Scholar
  63. Hall EO (1951) The deformation and ageing of mild steel: iii discussion of results. Proc Phys Soc Sect B 64(9):747Google Scholar
  64. Haupt P (2002) Continuum mechanics and theory of materials. Springer, BerlinzbMATHGoogle Scholar
  65. Hayhurst DR (1994) The use of continuum damage mechanics in creep analysis for design. J Strain Anal Eng Des 25(3):233–241Google Scholar
  66. Hayhurst DR, Leckie FA (1990) Yielding, damage and failure of anisotropic solids. In: Boehler JP (ed) High temperature creep continuum damage in metals. Mechanical Engineering Publ, London, pp 445–464Google Scholar
  67. Hayhurst DR, Wong MT, Vakili-Tahami F (2002) The use of CDM analysis techniques in high temperature creep failure of welded structures. JSME Int J Ser A 45:90–97Google Scholar
  68. Herring C (1950) Diffusional viscosity of a polycrystalline solid. J Appl Phys 21(5):437–445Google Scholar
  69. Holdsworth S, Mazza E, Binda L, Ripamonti L (2007) Development of thermal fatigue damage in 1CrMoV rotor steel. Nucl Eng Des 237:2292–2301Google Scholar
  70. Hutchinson JW (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. Proc Roy Soc London Math Phys Sci 348(1652):101–127zbMATHGoogle Scholar
  71. Hyde T, Sun W, Hyde C (2013) Applied creep mechanics. McGraw-Hill Education, New YorkGoogle Scholar
  72. Hyde TH, Xia L, Becker AA (1996) Prediction of creep failure in aeroengine materials under multi-axial stress states. Int J Mech Sci 38(4):385–403Google Scholar
  73. Hyde TH, Sun W, Becker AA, Williams JA (1997) Creep continuum damage constitutive equations for the base, weld and heat-affected zone materials of a service-aged 1/2Cr1/2Mo1/4V:2 1/4Cr1Mo multipass weld at 640 \(^{\circ }\)C. J Strain Anal Eng Des 32(4):273–285Google Scholar
  74. Hyde TH, Sun W, Williams JA (1999) Creep behaviour of parent, weld and HAZ materials of new, service aged and repaired 1/2Cr1/2Mo1/4V: 21/4Cr1Mo pipe welds at 640 \(^{\circ }\)C. Mater High Temp 16(3):117–129Google Scholar
  75. Hyde TH, Yaghi A, Becker AA, Earl PG (2002) Finite element creep continuum damage mechanics analysis of pressurised pipe bends with ovality. JSME Int J Ser A 45(1):84–89Google Scholar
  76. Hyde TH, Sun W, Agyakwa PA, Shipeay PH, Williams JA (2003) Anisotropic creep and fracture behaviour of a 9CrMoNbV weld metal at 650 \(^\circ \)C. In: Skrzypek JJ, Ganczarski AW (eds) Anisotropic Behav Damaged Mater. Springer, Berlin, pp 295–316Google Scholar
  77. Illschner B (1973) Hochtemperatur-Plastizität. Springer, BerlinGoogle Scholar
  78. Inoue T (1988) Inelastic constitutive models under plasticity-creep interaction condition—theories and evaluations. JSME Int J Ser I 31(4):653–663Google Scholar
  79. Kassner ME, Pérez-Prado MT (2004) Fundamentals of creep in melals and alloys. Elsevier, AmsterdamGoogle Scholar
  80. Kawai M (1989) Creep and plasticity of austenitic stainless steel under multiaxial non-proportional loadings at elevated temperatures. In: Hui D, Kozik TJ (eds) Visco-plastic behavior of new materials, ASME, PVP-Vol 184, New York, pp 85–93Google Scholar
  81. Keralavarma SM, Cagin T, Arsenlis A, Benzerga AA (2012) Power-law creep from discrete dislocation dynamics. Physical Review Letters 109(26):265,504Google Scholar
  82. Kimura K, Kushima H, Sawada K (2009) Long-term creep deformation properties of 9Cr-1Mo steel. Mater Sci Eng A510–A511:58–63Google Scholar
  83. Kimura M, Yamaguchi K, Hayakawa M, Kobayashi K, Kanazawa K (2006) Microstructures of creep-fatigued 9–12 % Cr ferritic heat-resisting steels. Int J Fatigue 28(3):300–308Google Scholar
  84. Kloc L, Sklenička V (1997) Transition from power-law to viscous creep beahviour of P-91 type heat-resistant steel. Mater Sci Eng A234–A236:962–965Google Scholar
  85. Kloc L, Sklenička V (2004) Confirmation of low stress creep regime in 9 % chromium steel by stress change creep experiments. Mater Sci Eng A387–A389:633–638Google Scholar
  86. Kloc L, Sklenička V, Ventruba J (2001) Comparison of low creep properties of ferritic and austenitic creep resistant steels. Mater Sci Eng A319–A321:774–778Google Scholar
  87. Kostenko Y, Almstedt H, Naumenko K, Linn S, Scholz A (2013) Robust methods for creep fatigue analysis of power plant components under cyclic transient thermal loading. In: ASME turbo Expo 2013: turbine technical conference and exposition, American Society of Mechanical Engineers, pp V05BT25A040–V05BT25A040Google Scholar
  88. Kowalewski ZL (1995) Experimental evaluation of the influence of the stress state type on the creep characteristics of copper at 523 K. Arch Mech 47(1):13–26Google Scholar
  89. Kowalewski ZL (2001) Assessment of the multiaxial creep data based on the isochronous creep surface concept. In: Murakami S, Ohno N (eds) IUTAM symposium on creep in structures. Kluwer, Dordrecht, pp 401–418Google Scholar
  90. Kowalewski ZL, Hayhurst DR, Dyson BF (1994) Mechanisms-based creep constitutive equations for an aluminium alloy. J Strain Anal Eng Des 29(4):309–316Google Scholar
  91. Kraft O, Gruber PA, Mönig R, Weygand D (2010) Plasticity in confined dimensions. Annu Rev Mater Res 40:293–317Google Scholar
  92. Kraus H (1980) Creep Anal. Wiley, New YorkGoogle Scholar
  93. Krausz AS, Krausz K (1996) Unified constitutive laws of plastic deformation. Academic Press, San DiegoGoogle Scholar
  94. Krempl E (1999) Creep-plasticity interaction. In: Altenbach H, Skrzypek J (eds) Creep and damage in materials and structures, Springer, New York, pp 285–348, CISM Lecture Notes No. 399Google Scholar
  95. Krieg R (1999) Reactor pressure vessel under severe accident loading. Final Report of EU-Project Contract FI4S-CT95-0002. Technical report, Forschungszentrum Karlsruhe, KarlsruheGoogle Scholar
  96. Kubin L (2013) Dislocations, mesoscale simulations and plastic flow. Oxford Series on Materials Modelling, OUP OxfordGoogle Scholar
  97. Laengler F, Mao T, Aleksanoglu H, Scholz A (2010) Phenomenological lifetime assessment for turbine housings of turbochargers. In: Proceedings of 9th international conference on multiaxial fatigue and fracture, 7th–9th June, 2010, Parma, Italy, (CD-ROM), Parma, pp 283–291Google Scholar
  98. Langdon TG (2006) Grain boundary sliding revisited: developments in sliding over four decades. J Mater Sci 41:597–609Google Scholar
  99. Längler F, Naumenko K, Altenbach H, Ievdokymov M (2014) A constitutive model for inelastic behavior of casting materials under thermo-mechanical loading. J Strain Anal Eng Des 49:421–428Google Scholar
  100. Lazan BJ (1949) Dynamic creep and rupture properties of temperature-resistant materials under tensile fatigue stress. Proc ASTM 49:757–787Google Scholar
  101. Le May I, da Silveria TL, Cheung-Mak SKP (1994) Uncertainties in the evaluations of high temperature damage in power stations and petrochemical plant. Int J of Press Vessels Pip 59:335–343Google Scholar
  102. Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer, BerlinGoogle Scholar
  103. Lepinoux J, Kubin L (1987) The dynamic organization of dislocation structures: a simulation. Scr Metall 21(6):833–838Google Scholar
  104. Libai A, Simmonds JG (1998) The nonlinear theory of elastic shells. Cambridge University Press, CambridgezbMATHGoogle Scholar
  105. Lucas GE, Pelloux RMN (1981) Texture and stress state dependent creep in Zircaloy-2. Metall Trans A 12A:1321–1331Google Scholar
  106. Malinin NN (1981) Raschet na polzuchest’ konstrukcionnykh elementov (Creep calculations of structural elements, in Russ.). Mashinostroenie, MoskvaGoogle Scholar
  107. Manson SS (1953) Behavior of materials under conditions of thermal stress. NACA TN 2933Google Scholar
  108. Maugin GA (1992) The thermomechanics of plasticity and fracture. Cambridge University Press, CambridgezbMATHGoogle Scholar
  109. Maugin GA (1993) Material inhomogeneities in elasticity. Chapman Hall, LondonzbMATHGoogle Scholar
  110. Maugin GA (2011) Configurational forces: thermomechanics, physics, mathematics, and numerics. CRC Pressl, Boca RatonGoogle Scholar
  111. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778zbMATHMathSciNetGoogle Scholar
  112. Miller AK (ed) (1987) Unified constitutive equations for creep and plasticity. Elsevier, LondonGoogle Scholar
  113. Miner M (1945) Cumulative damage in fatigue. J Appl Mech 12:159–164Google Scholar
  114. Monkman FC, Grant NJ (1956) An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. In: Proc ASTM, vol 56, pp 593–620Google Scholar
  115. Mughrabi H (2009) Cyclic slip irreversibilities and the evolution of fatigue damage. Metall Mater Trans B 40(4):431–453Google Scholar
  116. Murakami S, Sanomura Y (1985) Creep and creep damage of copper under multiaxial states of stress. In: Sawczuk A, Bianchi B (eds) Plasticity today—modelling, methods and applications. Elsevier, London, pp 535–551Google Scholar
  117. Nabarro FRN (1948) Report of a conference on the strength of solids. The Physical Society, London 75Google Scholar
  118. Nabarro FRN (2002) Creep at very low rates. Metall Mater Trans A 33(2):213–218Google Scholar
  119. Nabarro FRN, de Villiers HL (1995) The physics of creep, creep and creep-resistant alloys. Taylor & Francis, LondonGoogle Scholar
  120. Nagode M, Längler F, Hack M (2011) Damage operator based lifetime calculation under thermo-mechanical fatigue for application on Ni-resist D-5S turbine housing of turbocharger. Eng Fail Anal 18(6):1565–1575Google Scholar
  121. Naumenko K, Altenbach H (2007) Modelling of creep for structural analysis. Springer, BerlinGoogle Scholar
  122. Naumenko K, Gariboldi E (2014) A phase mixture model for anisotropic creep of forged Al-Cu-Mg-Si alloy. Mater Sci Eng A 618:368–376Google Scholar
  123. Naumenko K, Kostenko Y (2009) Structural analysis of a power plant component using a stress-range-dependent creep-damage constitutive model. Mater Sci Eng A510–A511:169–174Google Scholar
  124. Naumenko K, Altenbach H, Gorash Y (2009) Creep analysis with a stress range dependent constitutive model. Arch Appl Mech 79:619–630zbMATHGoogle Scholar
  125. Naumenko K, Altenbach H, Kutschke A (2011a) A combined model for hardening, softening and damage processes in advanced heat resistant steels at elevated temperature. Int J Damage Mech 20:578–597Google Scholar
  126. Naumenko K, Kutschke A, Kostenko Y, Rudolf T (2011b) Multi-axial thermo-mechanical analysis of power plant components from 9–12 % Cr steels at high temperature. Eng Fract Mech 78:1657–1668Google Scholar
  127. Nikitenko AF (1984) Eksperimental’noe obosnovanie gipotezy suschestvovaniya poverkhnosti polzuchesti v usloviyakh slozhnogo nagruzheniya, (experimental justification of the hypothsis on existence of the creep surface under complex loading conditions, in russ.). Probl Prochn 8:3–8Google Scholar
  128. Niu L, Kobayashi M, Takaku H (2002) Creep rupture properties of an austenitic steel with high ductility under multi-axial stresses. ISIJ Int 42:1156–1181Google Scholar
  129. Nørbygaard T (2002) Studies of grain boundaries in materials subjected to diffusional creep. Ph.D. thesis, Risø National Laboratory, RoskildeGoogle Scholar
  130. Odqvist FKG (1974) Mathematical theory of creep and creep rupture. Oxford University Press, OxfordzbMATHGoogle Scholar
  131. Odqvist FKG, Hult J (1962) Kriechfestigkeit metallischer Werkstoffe. Springer, BerlinGoogle Scholar
  132. Ohno N (1998) Constitutive modeling of cyclic plasticity with emphasis on ratchetting. Int J Mech Sci 40(2):251–261zbMATHGoogle Scholar
  133. Ohno N, Takeuchi T (1994) Anisotropy in multiaxial creep of nickel-based single-crystal superalloy CMSX-2 (experiments and identification of active slip systems). JSME Int J Ser A 37:129–137Google Scholar
  134. Ohno N, Kawabata M, Naganuma J (1990) Aging effects on monotonic, stress-paused, and alternating creep of type 304 stainless steel. Int J of Plast 6:315–327Google Scholar
  135. Ohno N, Abdel-Karim M, Kobayashi M, Igari T (1998) Ratchetting characteristics of 316FR steel at high temperature, part I: strain-controlled ratchetting experiments and simulations. Int J Plast 14(4):355–372zbMATHGoogle Scholar
  136. Onck PR, Nguyen BN, Van der Giessen E (2000) Microstructural modelling of creep fracture in polycrystalline materials. In: Murakami S, Ohno N (eds) Creep in structures. Kluwer Academic Publishers, Dordrecht, pp 51–64Google Scholar
  137. Oytana C, Delobelle P, Mermet A (1982) Constitutive equations study in biaxial stress experimants. Trans ASME J Eng Mat Techn 104(3):1–11Google Scholar
  138. Ozhoga-Maslovskaja O (2014) Micro scale modeling grain boundary damage under creep conditions. Ph.D. thesis, Otto von Guericke University Magdeburg, MagdeburgGoogle Scholar
  139. Ozhoga-Maslovskaja O, Naumenko K, Altenbach H, Prygorniev O (2015) Micromechanical simulation of grain boundary cavitation in copper considering non-proportional loading. Comput Mater Sci 96(Part A):178–184Google Scholar
  140. Palmgren A (1924) Die Lebensdauer von Kugellagern. Z Ver Dtsch Ing 68(14):339–341Google Scholar
  141. Penkalla HJ, Schubert F, Nickel H (1988) Torsional creep of alloy 617 tubes at elevated temperature. In: Reichman S, Duhl DN, Maurer G, Antolovich S, Lund C (eds) Superalloys 1988, the metallurgical society, pp 643–652Google Scholar
  142. Penny RK, Mariott DL (1995) Design for creep. Chapman & Hall, LondonGoogle Scholar
  143. Perrin IJ, Hayhurst DR (1994) Creep constitutive equations for a 0.5 Cr-0.5 Mo-0.25 V ferritic steel in the temperature range 600–675 \(^\circ \)C. J Strain Anal Eng Des 31(4):299–314Google Scholar
  144. Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174:25–28Google Scholar
  145. Pintschovius L, Gering E, Munz D, Fett T, Soubeyroux JL (1989) Determination of non-symmetric secondary creep behaviour of ceramics by residual stress measurements using neutron diffractometry. J Mater Sci Lett 8(7):811–813Google Scholar
  146. Podgorny AN, Bortovoj VV, Gontarovsky PP, Kolomak VD, Lvov GI, Matyukhin YJ, Morachkovsky OK (1984) Polzuchest’ elementov mashinostroitel’nykh konstrykcij (Creep of mashinery structural members, in Russ.). Naukova dumka, KievGoogle Scholar
  147. Polák J (2003) 4.01—Cyclic deformation, crack initiation, and low-cycle fatigue. In: Karihaloo I, Milne R, Ritchie B (eds) Comprehensive structural integrity. Pergamon, Oxford, pp 1–39Google Scholar
  148. Polmear IJ (2004) Aluminium alloys-a century of age hardening. Mater Forum 28:1–14Google Scholar
  149. Prygorniev O, Naumenko K (2013) Surface layer effects in polycrystalline structures under cyclic viscoplasticity. In: CanCNSM 2013, 4th canadian conference on nonlinear solid mechanics, Montreal, Canada 2013.07.23-26, published on CD-ROM, 6 ppGoogle Scholar
  150. Qin Y, Götz G, Blum W (2003) Subgrain structure during annealing and creep of the cast martensitic Cr-steel G-X12CrMoWVNbN 10-1-1. Mater Sci Eng A 341(1):211–215Google Scholar
  151. Rabotnov YN (1969) Creep problems in structural members. North-Holland, AmsterdamzbMATHGoogle Scholar
  152. Raj SV, Iskovitz IS, Freed AD (1996) Modeling the role of dislocation substructure during class M and exponential creep. In: Krausz AS, Krausz K (eds) Unified constitutive laws of plastic deformation. Academic Press, San Diego, pp 343–439Google Scholar
  153. Rice JR (1971) Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J Mech Phys Solids 19(6):433–455zbMATHGoogle Scholar
  154. Rieth M, Falkenstein A, Graf P, Heger S, Jäntsch U, Klimiankou M, Materna-Morris E, Zimmermann H (2004) Creep of the austenitic steel AISI 316 L(N). Experiments and models. Technical report, Forschungszentrum Karlsruhe, FZKA 7065, KarlsruheGoogle Scholar
  155. Robinson DN, Binienda WK, Ruggles MB (2003a) Creep of polymer matrix composites. I: Norton/Bailey Creep Law for transverse isotropy. Trans ASCE J Eng Mech 129(3):310–317Google Scholar
  156. Robinson DN, Binienda WK, Ruggles MB (2003b) Creep of polymer matrix composites. II: Monkman-Grant failure relationship for transverse isotropy. Trans ASCE J Eng Mech 129(3):318–323Google Scholar
  157. Robinson E (1952) Effect of temperature variation on the long-time rupture strength of steels. Trans ASME 74(5):777–781Google Scholar
  158. Roesler J, Harders H, Baeker M (2007) Mechanical behaviour of engineering materials: metals, Ceramics, Polymers, and Composites. Springer, BerlinGoogle Scholar
  159. Roters F, Eisenlohr P, Bieler T, Raabe D (2011) Crystal plasticity finite element methods: in materials science and engineering. Wiley, New YorkGoogle Scholar
  160. Röttger D (1997) Untersuchungen zum Wechselverformungs- und Zeitstandverhalten der Stähle X20CrMoV121 und X10CrMoVNb91. Dissertation, Universität GH Essen, Fortschr.-Ber. VDI Reihe 5, Nr. 507, DüsseldorfGoogle Scholar
  161. Sakane M, Hosokawa T (2001) Biaxial and triaxial creep testing of type 304 stainless steel at 923 k. In: Murakami S, Ohno N (eds) IUTAM symposium on creep in structures. Kluwer, Dordrecht, pp 411–418Google Scholar
  162. Sakane M, Tokura H (2002) Experimental study of biaxial creep damage for type 304 stainless steel. Int J Damage Mech 11:247–262Google Scholar
  163. Samir A, Simon A, Scholz A, Berger C (2005) Deformation and life assessment of high temperature materials under creep fatigue loading. Materialwiss Werkstofftech 36:722–730Google Scholar
  164. Schmitt R, Müller R, Kuhn C, Urbassek H (2013) A phase field approach for multivariant martensitic transformations of stable and metastable phases. Arch Appl Mech 83:849–859zbMATHGoogle Scholar
  165. Segle P, Tu ST, Storesund J, Samuelson LA (1996) Some issues in life assessment of longitudinal seam welds based on creep tests with cross-weld specimens. Int J Press Vessels Pip 66:199–222Google Scholar
  166. Shibli IA (2002) Performance of p91 thick section welds under steady and cyclic loading conditions: power plant and research experience. OMMI 1(3). http://www.ommi.co.uk
  167. Simon A (2007) Zur Berechnung betriebsnah belasteter Hochtemperaturstähle mit einem konstitutiven Werkstoffmodell. Dissertation, Technische Universität Darmstadt, Berichte aus der Werkstofftechnik, Band 4/2007, AachenGoogle Scholar
  168. Skelton RP (2003) 5.02—Creep-fatigue interactions (Crack Initiation). In: Karihaloo I, Milne R, Ritchie B (eds) Comprehensive structural integrity. Pergamon, Oxford, pp 25–112Google Scholar
  169. Skrzypek J, Ganczarski A (1998) Modelling of material damage and failure of structures. Foundation of engineering mechanics. Springer, BerlinGoogle Scholar
  170. Skrzypek JJ (1993) Plasticity and creep. CRC Press, Boca RatonzbMATHGoogle Scholar
  171. Sosnin OV (1974) Energeticheskii variant teorii polzuchesti i dlitel’noi prochnosti. polzuchest’ i razrushenie neuprochnyayushikhsya materialov (energetic variant of the creep and long-term strength theories. creep and fracture of nonhardening materials, in russ.). Probl Prochn 5:45–49Google Scholar
  172. Sosnin OV, Gorev BV, Nikitenko AF (1986) Energeticheskii variant teorii polzuchesti (Energetic variant of the creep theory, in Russ.). Institut Gidrodinamiki, NovosibirskGoogle Scholar
  173. Stouffer DC, Dame LT (1996) Inelastic deformation of metals. Wiley, New YorkGoogle Scholar
  174. Straub S (1995) Verformungsverhalten und Mikrostruktur warmfester martensitischer 12 %-Chromstähle. Dissertation, Universität Erlangen-Nürnberg, Fortschr.-Ber. VDI Reihe 5, Nr. 405, DüsseldorfGoogle Scholar
  175. Taira S (1962) Lifetime of structures subjected to varying load and temperature. In: Hoff NJ (ed) Creep in structures. Springer, Berlin, pp 96–119Google Scholar
  176. Taira S, Koterazawa R (1962) Dynamic creep and fatigue of an 18-8-Mo-Nb Steel. Bull JSME 5(17):15–20Google Scholar
  177. Taira S, Ohtani R (1986) Teorija vysokotemperaturnoj prochnosti materialov (Theory of high-temperature strength of materials, in Russ.). Metallurgija, MoscowGoogle Scholar
  178. Trampczynski WA, Hayhurst DR, Leckie FA (1981) Creep rupture of copper and aluminium under non-proportional loading. J Mech Phys Solids 29:353–374Google Scholar
  179. Trivaudey F, Delobelle P (1993) Experimental study and modelization of creep damage under multi-axial loadings at high temperature. In: Wilshire B, Evans RW (eds) Creep and fracture of engineering materials and structures. Institute of Materials, London, pp 137–147Google Scholar
  180. Tvergaard V (1990) Material failure by void growth to coalescence. Adv Appl Mech 27:83–51zbMATHGoogle Scholar
  181. Viswanathan R (1989) Damage mechanisms and life assessment of high temperature components. ASM internationalGoogle Scholar
  182. Wang P, Cui L, Scholz A, Linn S, Oechsner M (2014) Multiaxial thermomechanical creep-fatigue analysis of heat-resistant steels with varying chromium contents. Int J Fatigue 67:220–227Google Scholar
  183. Wiese S (2010) Verformung und Schädigung von Werkstoffen der Aufbau- und Verbindungstechnik: das Verhalten im Mikrobereich. Springer, BerlinGoogle Scholar
  184. Wiese S, Roellig M, Mueller M, Wolter KJ (2008) The effect of downscaling the dimensions of solder interconnects on their creep properties. Microelectron Reliab 48(6):843–850Google Scholar
  185. Winstone MR (1998) Microstructure and alloy developments in nickel-based superalloys. In: Strang A, Cawley J, Greenwood GW (eds) Microstructural stability of creep resistant alloys for high temperature plant applications. Cambridge University Press, Cambridge, pp 27–47Google Scholar
  186. Yagi K, Merckling G, Kern TU, Irie H, Warlimont H (2004) Creep properties of heat resistant steels and superalloys. Landolt-Börnstein—Group VIII advanced materials and technologies: numerical data and functional relationships in science and technology. Springer, BerlinGoogle Scholar
  187. Yaguchi M, Takahashi Y (2005) Ratchetting of viscoplastic material with cyclic softening, part 1: experiments on modified 9Cr–1Mo steel. Int J Plast 21(1):43–65zbMATHGoogle Scholar
  188. Zhang S, Harada M, Ozaki K, Sakane M (2007) Multiaxial creep-fatigue life using cruciform specimen. Int J Fatigue 29(5):852–859Google Scholar
  189. Zolochevskij AA (1988) Kriechen von Konstruktionselementen aus Materialien mit von der Belastung abhängigen Charakteristiken. Tech Mech 9:177–184Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of MechanicsOtto-von-Guericke University MagdeburgMagdeburgGermany

Personalised recommendations