Advertisement

The Effective-One-Body Approach to the General Relativistic Two Body Problem

  • Thibault Damour
  • Alessandro Nagar
Part of the Lecture Notes in Physics book series (LNP, volume 905)

Abstract

The two-body problem in General Relativity has been the subject of many analytical investigations. After reviewing some of the methods used to tackle this problem (and, more generally, the N-body problem), we focus on a new, recently introduced approach to the motion and radiation of (comparable mass) binary systems: the Effective One Body (EOB) formalism. We review the basic elements of this formalism, and discuss some of its recent developments. Several recent comparisons between EOB predictions and Numerical Relativity (NR) simulations have shown the aptitude of the EOB formalism to provide accurate descriptions of the dynamics and radiation of various binary systems (comprising black holes or neutron stars) in regimes that are inaccessible to other analytical approaches (such as the last orbits and the merger of comparable mass black holes). In synergy with NR simulations, post-Newtonian (PN) theory and Gravitational Self-Force (GSF) computations, the EOB formalism is likely to provide an efficient way of computing the very many accurate template waveforms that are needed for Gravitational Wave (GW) data analysis purposes.

Keywords

Black Hole Neutron Star Gravitational Wave Kerr Black Hole Radiation Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akcay, S., Barack, L., Damour, T., Sago, N.: Gravitational self-force and the effective-one-body formalism between the innermost stable circular orbit and the light ring. Phys. Rev. D86, 104041 (2012). http://dx.doi.org/10.1103/PhysRevD.86.104041DOI; http://arxiv.org/abs/1209.0964arXiv:1209.0964[gr-qc]
  2. 2.
    Baker, J.G., Centrella, J., Choi, D.I., Koppitz, M., van Meter, J.: Gravitational wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006). http://arxiv.org/abs/gr-qc/0511103gr-qc/0511103
  3. 3.
    Baiotti, L., Damour, T., Giacomazzo, B., Nagar, A., Rezzolla, L.: Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars. Phys. Rev. Lett. 105, 261101 (2010). http://arxiv.org/abs/1009.0521 [gr-qc]1009.0521 [gr-qc]
  4. 4.
    Baiotti, L., Damour, T., Giacomazzo, B., Nagar, A., Rezzolla, L.: Accurate numerical simulations of inspiralling binary neutron stars and their comparison with effective-one-body analytical models. Phys. Rev. D 84, 024017 (2011). http://arxiv.org/abs/1103.3874 [gr-qc]1103.3874 [gr-qc]
  5. 5.
    Barack, L.: Gravitational self force in extreme mass-ratio inspirals. Class. Quantum Gravity 26, 213001 (2009). http://arxiv.org/abs/0908.1664 [gr-qc]0908.1664 [gr-qc]
  6. 6.
    Barack, L., Damour, T., Sago, N.: Precession effect of the gravitational self-force in a Schwarzschild spacetime and the effective one-body formalism. Phys. Rev. D 82, 084036 (2010). http://arxiv.org/abs/1008.0935 [gr-qc]1008.0935 [gr-qc]
  7. 7.
    Barausse, E., Buonanno, A.: An Improved effective-one-body Hamiltonian for spinning black-hole binaries. Phys. Rev. D 81, 084024 (2010). http://arxiv.org/abs/0912.3517 [gr-qc]0912.3517 [gr-qc]
  8. 8.
    Barausse, E., Buonanno, A.: Extending the effective-one-body Hamiltonian of black-hole binaries to include next-to-next-to-leading spin-orbit couplings. Phys. Rev. D 84, 104027 (2011). http://arxiv.org/abs/1107.2904 [gr-qc]1107.2904 [gr-qc]
  9. 9.
    Barausse, E., Racine, E., Buonanno, A.: Hamiltonian of a spinning test-particle in curved spacetime [Erratum-ibid. D 85, 069904 (2012)]. Phys. Rev. D 80, 104025 (2009). http://arxiv.org/abs/0907.4745 [gr-qc]0907.4745 [gr-qc]
  10. 10.
    Barausse, E., Buonanno, A., Hughes, S.A., Khanna, G., O’Sullivan, S., et al.: Modeling multipolar gravitational-wave emission from small mass-ratio mergers. Phys. Rev. D85, 024046 (2012). http://dx.doi.org/10.1103/PhysRevD.85.024046DOI; http://arxiv.org/abs/1110.3081arXiv:1110.3081[gr-qc]
  11. 11.
    Barausse, E., Buonanno, A., Le Tiec, A.: The complete non-spinning effective-one-body metric at linear order in the mass ratio. Phys. Rev. D 85, 064010 (2012). http://arxiv.org/abs/1111.5610 [gr-qc]1111.5610 [gr-qc]
  12. 12.
    Bernuzzi, S., Nagar, A., Zenginoglu, A.: Binary black hole coalescence in the extreme-mass-ratio limit: testing and improving the effective-one-body multipolar waveform. Phys. Rev. D 83, 064010 (2011). http://arxiv.org/abs/1012.2456 [gr-qc]1012.2456 [gr-qc]
  13. 13.
    Bernuzzi, S., Nagar, A., Thierfelder, M., Brugmann, B.: Tidal effects in binary neutron star coalescence. Phys. Rev. D 86, 044030 (2012) (arXiv:1205.3403 [gr-qc])Google Scholar
  14. 14.
    Bernuzzi, S., Nagar, A., Balmelli, S., Dietrich, T., Ujevic, M.: Quasiuniversal properties of neutron star mergers. Phys. Rev. Lett. 112, 201101 (2014) (arXiv:1402.6244 [gr-qc])Google Scholar
  15. 15.
    Berti, E., Cardoso, V., Gonzalez, J.A., Sperhak, U., Hannam, M., Husa, S., Bruegmann, B.: Inspiral, merger and ringdown of unequal mass black hole binaries: a multipolar analysis. Phys. Rev. D 76, 064034 (2007). http://arxiv.org/abs/gr-qc/0703053gr-qc/0703053
  16. 16.
    Bini, D., Damour, T.: Gravitational radiation reaction along general orbits in the effective one-body formalism. Phys. Rev. D 86, 124012 (2012). http://arxiv.org/abs/1210.2834[gr-qc]1210.2834[gr-qc]Google Scholar
  17. 17.
    Bini, D., Damour, T.: Gravitational radiation reaction along general orbits in the effective one-body formalism. Phys. Rev. D 86, 124012 (2012) (arXiv:1210.2834 [gr-qc])Google Scholar
  18. 18.
    Bini, D., Damour, T.: Analytical determination of the two-body gravitational interaction potential at the 4th post-Newtonian approximation. Phys. Rev. D 87, 121501(R) (2013) (arXiv:1305.4884 [gr-qc])Google Scholar
  19. 19.
    Bini, D., Damour, T., Faye, G.: Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description. Phys. Rev. D 85, 124034 (2012). http://arxiv.org/abs/1202.3565 [gr-qc]1202.3565 [gr-qc]
  20. 20.
    Blanchet, L.: Gravitational radiation from post-newtonian sources and inspiralling compact binaries (arXiv:1310.1528 [gr-qc])Google Scholar
  21. 21.
    Blanchet, L.: Gravitational-wave tails of tails [Erratum-ibid. 22, 3381 (2005)]. Class. Quantum Gravity 15, 113 (1998). http://arxiv.org/abs/gr-qc/9710038gr-qc/9710038
  22. 22.
    Blanchet, L., Damour, T.: Postnewtonian generation of gravitational waves. Ann. Poincaré Phys. Theor. 50, 377 (1989)zbMATHMathSciNetADSGoogle Scholar
  23. 23.
    Blanchet, L., Damour, T.: Hereditary effects in gravitational radiation. Phys. Rev. D 46, 4304 (1992)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Blanchet, L., Faye, G.: General relativistic dynamics of compact binaries at the third post-Newtonian order. Phys. Rev. D 63, 062005 (2001). http://arxiv.org/abs/gr-qc/0007051gr-qc/0007051
  25. 25.
    Blanchet, L., Damour, T. Esposito-Farèse, G.: Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates. Phys. Rev. D 69, 124007 (2004). http://arxiv.org/abs/gr-qc/0311052gr-qc/0311052
  26. 26.
    Blanchet, L., Damour, T., Esposito-Farèse, G., Iyer, B.R.: Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order. Phys. Rev. Lett. 93, 091101 (2004). http://arxiv.org/abs/gr-qc/0406012gr-qc/0406012
  27. 27.
    Blanchet, L., Faye, G., Iyer, B.R., Sinha, S.: The third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits. Class. Quantum Gravity 25, 165003 (2008). http://arxiv.org/abs/0802.1249 [gr-qc]0802.1249 [gr-qc]
  28. 28.
    Blanchet, L., Detweiler, S.L., Le Tiec, A., Whiting, B.F.: High-order post-Newtonian fit of the gravitational self-force for circular orbits in the Schwarzschild geometry. Phys. Rev. D 81, 084033 (2010). http://arxiv.org/abs/1002.0726 [gr-qc]1002.0726 [gr-qc]
  29. 29.
    Boyle, M. et al.: High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions. Phys. Rev. D 76, 124038 (2007). http://arxiv.org/abs/0710.0158 [gr-qc]0710.0158 [gr-qc]
  30. 30.
    Brumberg, V.A.: Essential Relativistic Celestial Mechanics. Adam Hilger Editor, Bristol (1991)zbMATHGoogle Scholar
  31. 31.
    Brézin, E., Itzykson, C., Zinn-Justin, J.: Relativistic balmer formula including recoil effects. Phys. Rev. D 1, 2349 (1970)CrossRefADSGoogle Scholar
  32. 32.
    Buonanno, A., Damour, T.: Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999). http://arxiv.org/abs/gr-qc/9811091gr-qc/9811091
  33. 33.
    Buonanno, A., Damour, T.: Transition from inspiral to plunge in binary black hole coalescences. Phys. Rev. D 62, 064015 (2000). http://arxiv.org/abs/gr-qc/0001013gr-qc/0001013
  34. 34.
    Buonanno, A., Chen, Y., Damour, T.: Transition from inspiral to plunge in precessing binaries of spinning black holes. Phys. Rev. D 74, 104005 (2006). http://arxiv.org/abs/gr-qc/0508067gr-qc/0508067
  35. 35.
    Buonanno, A., Cook, G.B., Pretorius, F.: Inspiral, merger and ring-down of equal-mass black-hole binaries. Phys. Rev. D 75, 124018 (2007). http://arxiv.org/abs/gr-qc/0610122gr-qc/0610122
  36. 36.
    Buonanno, A., Pan, Y., Baker, J.G., Centrella, J., Kelly, B.J., McWilliams, S.T., van Meter, J.R.: Toward faithful templates for non-spinning binary black holes using the effective-one-body approach. Phys. Rev. D 76, 104049 (2007). http://arxiv.org/abs/0706.3732 [gr-qc]0706.3732 [gr-qc]
  37. 37.
    Buonanno, A., Pan, Y., Pfeiffer, H.P., Scheel, M.A., Buchman, L.T., Kidder, L.E.: Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-spinning, equal-mass black holes. Phys. Rev. D 79, 124028 (2009). http://arxiv.org/abs/0902.0790 [gr-qc]0902.0790 [gr-qc]
  38. 38.
    Campanelli, M., Lousto, C.O., Marronetti, P. Zlochower, Y.: Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006). http://arxiv.org/abs/gr-qc/0511048gr-qc/0511048
  39. 39.
    Chazy, J.: La théorie de la Relativité et la Mécanique Céleste, vols. 1, 2. Gauthier-Villars, Paris (1928/1930)Google Scholar
  40. 40.
    Colpi, M., et al. (ed.): Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence. Astrophysics and Space Science Library, vol. 359. Springer, Dordrecht (2009)Google Scholar
  41. 41.
    Damour, T.: Problème des deux corps et freinage de rayonnement en relativité générale. C. R. Acad. Sci. Paris Sér. II 294, 1355–1357 (1982)MathSciNetGoogle Scholar
  42. 42.
    Damour, T.: Coalescence of two spinning black holes: an effective one-body approach. Phys. Rev. D 64, 124013 (2001). http://arxiv.org/abs/gr-qc/0103018gr-qc/0103018
  43. 43.
    Damour, T.: Gravitational Self force in a schwarzschild background and the effective one body formalism. Phys. Rev. D 81, 024017 (2010). http://arxiv.org/abs/0910.5533 [gr-qc]0910.5533 [gr-qc]
  44. 44.
    Damour, T.: Gravitational radiation and the motion of compact bodies. In: Deruelle, N., Piran, T. (eds.) Gravitational Radiation, pp. 59–144. North-Holland, Amsterdam (1983)Google Scholar
  45. 45.
    Damour, T.: (unpublished); cited in Ref. [6], which quoted and used some combinations of the logarithmic contributions to a(u) and \(\bar{d}(u)\) (2010)Google Scholar
  46. 46.
    Damour, T., Deruelle, N.: Radiation reaction and angular momentum loss in small angle gravitational scattering. Phys. Lett. A 87, 81 (1981)CrossRefADSGoogle Scholar
  47. 47.
    Damour, T., Esposito-Farese, G.: Testing gravity to second postNewtonian order: a field theory approach. Phys. Rev. D 53, 5541 (1996) [gr-qc/9506063]Google Scholar
  48. 48.
    Damour, T., Esposito-Farèse, G.: Gravitational-wave versus binary-pulsar tests of strong-field gravity. Phys. Rev. D 58, 042001 (1998)CrossRefADSGoogle Scholar
  49. 49.
    Damour, T., Gopakumar, A.: Gravitational recoil during binary black hole coalescence using the effective one body approach. Phys. Rev. D 73, 124006 (2006). http://arxiv.org/abs/gr-qc/0602117gr-qc/0602117
  50. 50.
    Damour, T., Iyer, B.R.: PostNewtonian generation of gravitational waves, 2. The spin moments. Ann. Poincaré Phys. Theor. 54, 115 (1991)Google Scholar
  51. 51.
    Damour, T., Nagar, A.: Faithful effective-one-body waveforms of small-mass-ratio coalescing black-hole binaries. Phys. Rev. D 76, 064028 (2007). http://arxiv.org/abs/0705.2519 [gr-qc]0705.2519 [gr-qc]
  52. 52.
    Damour, T., Nagar, A.: Final spin of a coalescing black-hole binary: an effective-one-body approach. Phys. Rev. D 76, 044003 (2007). http://arxiv.org/abs/0704.3550 [gr-qc]0704.3550 [gr-qc]
  53. 53.
    Damour, T., Nagar, A.: Comparing effective-one-body gravitational waveforms to accurate numerical data. Phys. Rev. D 77, 024043 (2008). http://arxiv.org/abs/0711.2628 [gr-qc]0711.2628 [gr-qc]
  54. 54.
    Damour, T., Nagar, A.: A new effective-one-body description of coalescing nonprecessing spinning black-hole binaries (arXiv:1406.6913 [gr-qc])Google Scholar
  55. 55.
    Damour, T., Nagar, A.: An improved analytical description of inspiralling and coalescing black-hole binaries. Phys. Rev. D 79, 081503 (2009). http://arxiv.org/abs/0902.0136 [gr-qc]0902.0136 [gr-qc]
  56. 56.
    Damour, T., Nagar, A.: The effective one body description of the two-body problem. Fundam. Theor. Phys. 162, 211 (2011). http://arxiv.org/abs/0906.1769 [gr-qc]0906.1769 [gr-qc]
  57. 57.
    Damour, T., Schäfer, G.: Higher order relativistic periastron advances and binary pulsars. Nuovo Cimento B 101, 127 (1988)CrossRefADSGoogle Scholar
  58. 58.
    Damour, T., Soffel, M., Xu, C.M.: General relativistic celestial mechanics. (1) Method and definition of reference system. Phys. Rev. D 43, 3273 (1991); General relativistic celestial mechanics. (2) Translational equations of motion. Phys. Rev. D 45, 1017 (1992); General relativistic celestial mechanics. (3) Rotational equations of motion. Phys. Rev. D 47, 3124 (1993); General relativistic celestial mechanics. (4) Theory of satellite motion. Phys. Rev. D 49, 618 (1994)Google Scholar
  59. 59.
    Damour, T., Iyer, B.R., Sathyaprakash, B.S.: Improved filters for gravitational waves from inspiralling compact binaries. Phys. Rev. D 57, 885 (1998). http://arxiv.org/abs/gr-qc/9708034gr-qc/9708034
  60. 60.
    Damour, T., Jaranowski, P., Schäfer, G.: Dynamical invariants for general relativistic two-body systems at the third postNewtonian approximation. Phys. Rev. D 62, 044024 (2000). http://arxiv.org/abs/gr-qc/9912092gr-qc/9912092
  61. 61.
    Damour, T., Jaranowski, P., Schäfer, G.: On the determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation. Phys. Rev. D 62, 084011 (2000). http://arxiv.org/abs/gr-qc/0005034gr-qc/0005034
  62. 62.
    Damour, T., Jaranowski, P., Schäfer, G.: Poincaré invariance in the ADM Hamiltonian approach to the general relativistic two-body problem [Erratum-ibid. D 63, 029903 (2001)]. Phys. Rev. D 62, 021501 (2000). http://arxiv.org/abs/gr-qc/0003051gr-qc/0003051
  63. 63.
    Damour, T., Jaranowski, P., Schäfer, G.: Dimensional regularization of the gravitational interaction of point masses. Phys. Lett. B 513, 147–155 (2001). http://arxiv.org/abs/gr-qc/0105038gr-qc/0105038
  64. 64.
    Damour, T., Gourgoulhon, E., Grandclément, P.: Circular orbits of corotating binary black holes: Comparison between analytical and numerical results. Phys. Rev. D 66, 024007 (2002). http://arxiv.org/abs/gr-qc/0204011gr-qc/0204011
  65. 65.
    Damour, T., Nagar, A., Tartaglia, A.: Binary black hole merger in the extreme mass ratio limit. Class. Quantum Gravity 24, S109 (2007). http://arxiv.org/abs/gr-qc/0612096gr-qc/0612096
  66. 66.
    Damour, T., Nagar, A., Hannam, M., Husa, S., Bruegmann, B.: Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries. Phys. Rev. D 78, 044039 (2008). http://arxiv.org/abs/0803.3162 [gr-qc]0803.3162 [gr-qc]
  67. 67.
    Damour, T., Nagar, A., Nils Dorband, E., Pollney, D., Rezzolla, L.: Faithful effective-one-body waveforms of equal-mass coalescing black-hole binaries. Phys. Rev. D 77, 084017 (2008). http://arxiv.org/abs/0712.3003 [gr-qc]0712.3003 [gr-qc]
  68. 68.
    Damour, T., Jaranowski, P., Schäfer, G.: Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling. Phys. Rev. D 78, 024009 (2008). http://arxiv.org/abs/0803.0915 [gr-qc]0803.0915 [gr-qc]
  69. 69.
    Damour, T., Iyer, B.R., Nagar, A.: Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries. Phys. Rev. D 79, 064004 (2009). http://arxiv.org/abs/0811.2069 [gr-qc]0811.2069 [gr-qc]
  70. 70.
    Damour, T., Nagar, A.: Effective One Body description of tidal effects in inspiralling compact binaries. Phys. Rev. D 81, 084016 (2010). http://arxiv.org/abs/0911.5041 [gr-qc]0911.5041 [gr-qc]
  71. 71.
    Damour, T., Nagar, A., Pollney, D., Reisswig, C.: Energy versus Angular momentum in black hole binaries. Phys. Rev. Lett. 108, 131101 (2012). http://arxiv.org/abs/1110.2938 [gr-qc]1110.2938 [gr-qc]
  72. 72.
    Damour, T., Nagar, A., Villain, L.: Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals. Phys. Rev. D 85, 123007 (2012) (arXiv:1203.4352 [gr-qc])Google Scholar
  73. 73.
    Damour, T., Nagar, A., Bernuzzi, S.: Improved effective-one-body description of coalescing nonspinning black-hole binaries and its numerical-relativity completion. Phys. Rev. D 87, 084035 (2013) (arXiv:1212.4357 [gr-qc])Google Scholar
  74. 74.
    Damour, T., Nagar, A., Villain, L.: Merger states and final states of black hole coalescences: a numerical-relativity-assisted effective-one-body approach (arXiv:1307.2868 [gr-qc])Google Scholar
  75. 75.
    Damour, T., Guercilena, F., Hinder, I., Hopper, S., Nagar, A., Rezzolla, L.: Strong-field scattering of two black holes: numerics versus analytics. Phys. Rev. D 89, 081503 (2014) (arXiv:1402.7307 [gr-qc])Google Scholar
  76. 76.
    Davis, M., Ruffini, R., Tiomno, J.: Pulses of gravitational radiation of a particle falling radially into a Schwarzschild black hole. Phys. Rev. D 5, 2932 (1972)CrossRefADSGoogle Scholar
  77. 77.
    De Sitter, W.: Mon. Not. R. Astron. Soc. 76, 699–728 (1916); 77, 155–184 (1916)Google Scholar
  78. 78.
    D’Eath, P.D.: Phys. Rev. D 11, 1387 (1975)CrossRefADSGoogle Scholar
  79. 79.
    Droste, J.: Versl. K. Akad. Wet. Amsterdam 19, 447–455 (1916)Google Scholar
  80. 80.
    Del Pozzo, W., Li, T.G.F., Agathos, M., Broeck, C.V.D., Vitale, S.: Demonstrating the feasibility of probing the neutron star equation of state with second-generation gravitational wave detectors (arXiv:1307.8338 [gr-qc])Google Scholar
  81. 81.
    Eardley, D.M.: Astrophys. J. 196, L59 (1975)CrossRefADSGoogle Scholar
  82. 82.
    Eddington, A., Clark, G.L.: Proc. R. Soc. (Lond.) A166, 465–475 (1938)Google Scholar
  83. 83.
    Einstein, A., Infeld, L., Hoffmann, B.: Ann. Math. 39, 65–100 (1938)MathSciNetCrossRefADSGoogle Scholar
  84. 84.
    Flanagan, E.E., Hinderer, T.: Constraining neutron star tidal Love numbers with gravitational wave detectors. Phys. Rev. D 77, 021502 (2008) (arXiv:0709.1915 [astro-ph])Google Scholar
  85. 85.
    Fock, V.A.: Zh. Eksp. i. Teor. Fiz. 9, 375 (1939)ADSGoogle Scholar
  86. 86.
    Fock, V.A.: The Theory of Space, Time and Gravitation Russian edition. State Technical Publications, Moscow (1955)Google Scholar
  87. 87.
    Foffa, S., Sturani, R.: Effective field theory calculation of conservative binary dynamics at third post-Newtonian order. Phys. Rev. D 84, 044031 (2011). http://arxiv.org/abs/1104.1122 [gr-qc]1104.1122 [gr-qc]
  88. 88.
    Foffa, S., Sturani, R.: Dynamics of the gravitational two-body problem at fourth post-Newtonian order and at quadratic order in the Newton constant. Phys. Rev. D 87(6), 064011 (2013) (arXiv:1206.7087 [gr-qc])Google Scholar
  89. 89.
    Foffa, S., Sturani, R.: Effective field theory methods to model compact binaries (arXiv:1309.3474 [gr-qc])Google Scholar
  90. 90.
    Fujita, R., Iyer, B.R.: Spherical harmonic modes of 5.5 post-Newtonian gravitational wave polarisations and associated factorised resummed waveforms for a particle in circular orbit around a Schwarzschild black hole. Phys. Rev. D 82, 044051 (2010). http://arxiv.org/abs/1005.2266 [gr-qc]1005.2266 [gr-qc]
  91. 91.
    Fujita, R.: Gravitational radiation for extreme mass ratio inspirals to the 14th post-Newtonian order. Prog. Theor. Phys. 127, 583 (2012). http://arxiv.org/abs/1104.5615 [gr-qc]1104.5615 [gr-qc]
  92. 92.
    Goldberger, W.D. Rothstein, I.Z.: An Effective field theory of gravity for extended objects. Phys. Rev. D73, 104029, (2006). http://dx.doi.org/10.1103/PhysRevD.73.104029DOI; http://arxiv.org/abs/hep-th/0409156arXiv:hep-th/0409156[hep-th]
  93. 93.
    Gonzalez, J.A., Sperhake, U., Bruegmann, B., Hannam, M., Husa, S.: Total recoil: the maximum kick from nonspinning black-hole binary inspiral. Phys. Rev. Lett. 98, 091101 (2007). http://arxiv.org/abs/gr-qc/0610154gr-qc/0610154
  94. 94.
    Hannam, M., Husa, S., Bruegmann, B., Gopakumar, A.: Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: the orbital hang-up case. Phys. Rev. D 78, 104007 (2008). http://arxiv.org/abs/0712.3787 [gr-qc]0712.3787 [gr-qc]
  95. 95.
    Hinder, I., Buonanno, A., Boyle, M., Etienne, Z.B., Healy, J., Johnson-McDaniel, N.K., Nagar, A., Nakano, H., et al.: Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration (arXiv:1307.5307 [gr-qc])Google Scholar
  96. 96.
    Hinderer, T., Lackey, B.D., Lang, R.N., Read, J.S.: Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys. Rev. D 81, 123016 (2010) (arXiv:0911.3535 [astro-ph.HE])Google Scholar
  97. 97.
    Hinderer, T., Buonanno, A., Mroué, A.H., Hemberger, D.A., Lovelace, G., Pfeiffer, H.P.: Periastron advance in spinning black hole binaries: comparing effective-one-body and Numerical Relativity (arXiv:1309.0544 [gr-qc])Google Scholar
  98. 98.
    Hotokezaka, K., Kyutoku, K., Shibata, M.: Exploring tidal effects of coalescing binary neutron stars in numerical relativity. Phys. Rev. D 87(4), 044001 (2013) (arXiv:1301.3555 [gr-qc])Google Scholar
  99. 99.
    Infeld, L., Plebanski, J.: Motion and Relativity. Pergamon Press, Oxford (1960)zbMATHGoogle Scholar
  100. 100.
    Itoh, Y., Futamase, T.: New derivation of a third post-Newtonian equation of motion for relativistic compact binaries without ambiguity. Phys. Rev. D 68, 121501 (2003). http://arxiv.org/abs/gr-qc/0310028gr-qc/0310028
  101. 101.
    Jaranowski, P., Schäfer, G.: 3rd post-Newtonian higher order Hamilton dynamics for two-body point-mass systems [Erratum-ibid. D 63, 029902 (2001)]. Phys. Rev. D 57, 72–74 (1998). http://arxiv.org/abs/gr-qc/9712075gr-qc/9712075
  102. 102.
    Jaranowski, P., Schafer, G.: Towards the 4th post-Newtonian Hamiltonian for two-point-mass systems. Phys. Rev. D 86, 061503 (2012) (arXiv:1207.5448 [gr-qc])Google Scholar
  103. 103.
    Jaranowski, P., Schäfer, G.: Dimensional regularization of local singularities in the 4th post-Newtonian two-point-mass Hamiltonian. Phys. Rev. D 87, 081503 (2013) (arXiv:1303.3225 [gr-qc])Google Scholar
  104. 104.
    Kates, R.E.: Phys. Rev. D 22, 1853 (1980)MathSciNetCrossRefADSGoogle Scholar
  105. 105.
    Kidder, L.E.: Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit. Phys. Rev. D 77, 044016 (2008). http://arxiv.org/abs/0710.0614 [gr-qc]0710.0614 [gr-qc]
  106. 106.
    Kopeikin, S.M.: Astron. Zh. 62, 889 (1985)ADSGoogle Scholar
  107. 107.
    Kopeikin, S.M.: Celest. Mech. 44, 87 (1988); Brumberg, V.A., Kopejkin, S.M.: Nuovo Cimento B 103, 63 (1988); Klioner, S.A., Voinov, A.V.: Phys. Rev. D 48, 1451 (1993)Google Scholar
  108. 108.
    Klioner, S.A., Seidelman, P.K., Soffel, M.H. (eds.): Relativity in Fundamental Astronomy: Dynamics, Reference Frames and Data Analysis. Proceedings of the IAU Symposium 261. Cambridge University Press, Cambridge (2010)Google Scholar
  109. 109.
    Levi-Civita, T.: Am. J. Math. 59, 9–22 (1937); Am. J. Math. 59, 225–234 (1937); Le problème des n corps en relativité générale. Mémorial des Sciences Mathématiques, vol. 116. Gauthier-Villars, Paris (1950)Google Scholar
  110. 110.
    Le Tiec, A., Mroue, A.H., Barack, L., Buonanno, A., Pfeiffer, H.P., Sago, N., Taracchini, A.: Periastron Advance in black hole binaries. Phys. Rev. Lett. 107, 141101 (2011). http://arxiv.org/abs/1106.3278 [gr-qc]1106.3278 [gr-qc]
  111. 111.
    Le Tiec, A., Blanchet, L., Whiting, B.F.: The first law of binary black hole mechanics in general relativity and post-newtonian theory. Phys. Rev. D 85, 064039 (2012). http://arxiv.org/abs/1111.5378 [gr-qc]1111.5378 [gr-qc]
  112. 112.
    Le Tiec, A., Barausse, E., Buonanno, A.: Gravitational self-force correction to the binding energy of compact binary systems. Phys. Rev. Lett. 108, 131103 (2012). http://arxiv.org/abs/1111.5609 [gr-qc]1111.5609 [gr-qc]
  113. 113.
    Lorentz, H.A., Droste, J.: Versl. K. Akad. Wet. Amsterdam 26, 392 (1917); 26, 649 (1917)Google Scholar
  114. 114.
    Manasse, F.K.: J. Math. Phys. 4, 746 (1963)zbMATHMathSciNetCrossRefADSGoogle Scholar
  115. 115.
    Mroue, A.H., Scheel, M.A., Szilagyi, B., Pfeiffer, H.P., Boyle, M., Hemberger, D.A., Kidder, L.E., Lovelace, G., et al.: A catalog of 171 high-quality binary black-hole simulations for gravitational-wave astronomy (arXiv:1304.6077 [gr-qc])Google Scholar
  116. 116.
    Nagar, A.: Effective one body Hamiltonian of two spinning black-holes with next-to-next-to-leading order spin-orbit coupling. Phys. Rev. D 84, 084028 (2011). http://arxiv.org/abs/1106.4349 [gr-qc]1106.4349 [gr-qc]
  117. 117.
    Ohta, T., Okamura, H., Kimura, T., Hiida, K.: Physically acceptable solution of einstein’s equation for many-body system. Prog. Theor. Phys. 50, 492 (1973)CrossRefADSGoogle Scholar
  118. 118.
    Ohta, T., Okamura, H., Kimura, T., Hiida, K.: Coordinate condition and higher order gravitational potential in canonical formalism. Prog. Theor. Phys. 51, 1598 (1974)CrossRefADSGoogle Scholar
  119. 119.
    Okamura, H., Ohta, T., Kimura, T., Hiida, K.: Perturbation calculation of gravitational potentials. Prog. Theor. Phys. 50, 2066 (1973)CrossRefADSGoogle Scholar
  120. 120.
    Pretorius, F.: Evolution of binary black hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005). http://arxiv.org/abs/gr-qc/0507014gr-qc/0507014
  121. 121.
    Pretorius, F.: Binary black hole coalescence. In: Colpi, M. et al. (ed.) Relativistic Objects in Compact Binaries: From Birth to Coalescense. Springer/Canopus Publishing Limited, Bristol (2007). http://arxiv.org/abs/arXiv:0710.1338 [gr-qc]arXiv:0710.1338 [gr-qc]
  122. 122.
    Price, R.H., Pullin, J.: Colliding black holes: the Close limit. Phys. Rev. Lett. 72, 3297 (1994). http://arxiv.org/abs/gr-qc/9402039gr-qc/9402039
  123. 123.
    Pan, Y., et al.: A data-analysis driven comparison of analytic and numerical coalescing binary waveforms: Nonspinning case. Phys. Rev. D 77, 024014 (2008). http://arxiv.org/abs/0704.1964 [gr-qc]0704.1964 [gr-qc]
  124. 124.
    Pan, Y., Buonanno, A., Buchman, L.T., Chu, T., Kidder, L.E., Pfeiffer, H.P., Scheel, M.A.: Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-precessing, spinning, equal-mass black holes. Phys. Rev. D 81, 084041 (2010). http://arxiv.org/abs/0912.3466 [gr-qc]0912.3466 [gr-qc] (arXiv:0912.3466 [gr-qc])
  125. 125.
    Pan, Y., Buonanno, A., Boyle, M., Buchman, L.T., Kidder, L.E., Pfeiffer, H.P., Scheel, M.A.: Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism. Phys. Rev. D 84, 124052 (2011). http://arxiv.org/abs/1106.1021 [gr-qc]1106.1021 [gr-qc]
  126. 126.
    Pan, Y., Buonanno, A., Fujita, R., Racine, E., Tagoshi, H.: Post-Newtonian factorized multipolar waveforms for spinning, non-precessing black-hole binaries. Phys. Rev. D 83, 064003 (2011). http://arxiv.org/abs/1006.0431 [gr-qc]1006.0431 [gr-qc]
  127. 127.
    Pan, Y., Buonanno, A., Taracchini, A., Kidder, L.E., Mroue, A.H., Pfeiffer, H.P., Scheel, M.A., Szilagyi, B.: Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism (arXiv:1307.6232 [gr-qc])Google Scholar
  128. 128.
    Pan, Y., Buonanno, A., Taracchini, A., Boyle, M., Kidder, L.E., Mroue, A.H., Pfeiffer, H.P., Scheel, M.A., et al.: Stability of nonspinning effective-one-body model in approximating two-body dynamics and gravitational-wave emission (arXiv:1311.2565 [gr-qc])Google Scholar
  129. 129.
    Radice, D., Rezzolla, L., Galeazzi, F.: Beyond second-order convergence in simulations of binary neutron stars in full general-relativity (arXiv:1306.6052 [gr-qc])Google Scholar
  130. 130.
    Schaefer, G.: The gravitational quadrupole radiation reaction force and the canonical formalism of ADM. Ann. Phys. 161, 81 (1985)CrossRefADSGoogle Scholar
  131. 131.
    Scheel, M.A., Boyle, M., Chu, T., Kidder, L.E., Matthews, K.D., Pfeiffer, H.P.: High-accuracy waveforms for binary black hole inspiral, merger, and ringdown. Phys. Rev. D 79, 024003 (2009). http://arxiv.org/abs/0810.1767 [gr-qc]0810.1767 [gr-qc]
  132. 132.
    Taracchini, A., Pan, Y., Buonanno, A., Barausse, E., Boyle, M., Chu, T., Lovelace, G., Pfeiffer, H.P., et al.: Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms. Phys. Rev. D 86, 024011 (2012) (arXiv:1202.0790 [gr-qc])Google Scholar
  133. 133.
    Taracchini, A., Buonanno, A., Pan, Y., Hinderer, T., Boyle, M., Hemberger, D.A., Kidder, L.E., Lovelace, G., et al.: Phys. Rev. D 89, 061502 (2014) (arXiv:1311.2544 [gr-qc])Google Scholar
  134. 134.
    Tagoshi, H., Sasaki, M.: Post-newtonian expansion of gravitational waves from a particle in circular orbit around a schwarzschild black hole. Prog. Theor. Phys 92, 745–771, (1994). http://arxiv.org/abs/gr-qc/9405062gr-qc/9405062
  135. 135.
    Tanaka, T., Tagoshi, H., Sasaki, M.: Gravitational waves by a particle in circular orbit around a Schwarzschild black hole. Prog. Theor. Phys. 96, 1087–1101 (1996). http://arxiv.org/abs/gr-qc/9701050gr-qc/9701050
  136. 136.
    Taracchini, A., Pan, Y., Buonanno, A., Barausse, E., Boyle, M., Chu, T., Lovelace, G., Pfeiffer, H.P., et al.: Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms. Phys. Rev. D 86, 0240110 (2012). http://arxiv.org/abs/1202.0790 [gr-qc]1202.0790 [gr-qc]
  137. 137.
    ’t Hooft, G., Veltman, M.J.G.: Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189 (1972)Google Scholar
  138. 138.
    Thorne, K.S., Hartle, J.B.: Laws of motion and precession for black holes and other bodies. Phys. Rev. D 31, 1815 (1984)MathSciNetCrossRefADSGoogle Scholar
  139. 139.
    Will, C.M., Eardley, D.M.: Astrophys. J. 212, L91 (1977)CrossRefADSGoogle Scholar
  140. 140.
    Will, C.M.: Theory and Experiment in Gravitational Physics, p. 380. Cambridge University Press, Cambridge (1993)Google Scholar
  141. 141.
    Yunes, N., Buonanno, A., Hughes, S.A., Coleman Miller, M., Pan, Y.: Modeling Extreme mass ratio inspirals within the effective-one-body approach. Phys. Rev. Lett. 104, 091102 (2010). http://arxiv.org/abs/0909.4263 [gr-qc]0909.4263 [gr-qc]
  142. 142.
    Yunes, N., Buonanno, A., Hughes, Pan, Y., Barausse, E., Miller, M.C., Throwe, W.: Extreme mass-ratio inspirals in the effective-one-body approach: quasi-circular, equatorial orbits around a spinning black hole. Phys. Rev. D 83, 044044 (2011). http://arxiv.org/abs/1009.6013 [gr-qc]1009.6013 [gr-qc]

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations