Advertisement

Videogrammetry System for Wind Turbine Vibration Monitoring

  • Germán Rodríguez
  • Maria Fuciños
  • Xosé M. Pardo
  • Xosé R. Fdez-Vidal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9117)

Abstract

Early detection of component failure in wind turbines produces a great value in savings. We present an external method for obtaining the tower vibrations using videogrammetry. We use a multi-view image acquisition system and a set of fiducial markers set on the surface of the tower. Targets are identified using a radial symmetry measure, their centre is located through elliptical model fitting, and they are recognized through a standard segmentation and decoding method. Finally targets are tracked and displacements processed. We have obtained good results in the tests performed and we intend to continue gathering data to build a classification system for identifying abnormal vibrations.

Keywords

Videogrammetry Wind turbine monitoring Vibrations 

Notes

Acknowledgments

This work was funded by the Spanish Centro para el Desarrollo Tecnológico Industrial (CDTI), program under Grant ITC_20133096.

References

  1. 1.
    Lu, B., Li, Y., Wu, X., Yang, Z.: A review of recent advances in wind turbine condition monitoring and fault diagnosis. In: Power Electronics and Machines in Wind Applications, PEMWA, pp. 1–7. IEEE (2009)Google Scholar
  2. 2.
    Carden, P., Fanning, P.: Vibration based condition monitoring: a review. Struct. Health Monit. 3, 355–377 (2004)CrossRefGoogle Scholar
  3. 3.
    Sabel, J.C.: Optical 3D motion measurement. In: IEEE Instrumentation and Measurement Technology Conference. Brussels, Belgium (1996)Google Scholar
  4. 4.
    Bassett, K.: Vibration based structural health monitoring for utility scale wind turbines. Electronic Theses and Dissertations, Paper 173 (2010)Google Scholar
  5. 5.
    Felsberg, M., Sommer, G.: A new extension of linear signal processing for estimating local properties and detecting features. In: 22 DAGM Symposium Mustererkennung. Springer-Verlag (2000)Google Scholar
  6. 6.
    Kovesi P: Invariant measures of image features from phase information. Ph.D. Thesis, University of Western Australia (1996)Google Scholar
  7. 7.
    Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 40, 1489–1506 (2000)CrossRefGoogle Scholar
  8. 8.
    Chen, Z., Ye, Z., Chan, D.T.W., Peng, G.: Target recognition based on mathematical morphology. In: CAD/Graphics 2007, pp 457–460 (2007)Google Scholar
  9. 9.
    Yang, W., Tavner, P.J., Wilkinson, M.R.: Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train. IET Renew. Power Gener. 3(1), 1–11 (2009)CrossRefGoogle Scholar
  10. 10.
    Rijsbergen, C.J.V.: Information Retrieval, 2nd edn. Butterworth-Heinemann, Newton (1979)Google Scholar
  11. 11.
    Dosil, R., Pardo, X., Fdez-Vidal, X., Garca-Daz, A., Leboran, V.: A new radial symmetry measure applied to photogrammetry. Pattern Anal. Appl. 16, 637–646 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Germán Rodríguez
    • 1
  • Maria Fuciños
    • 1
  • Xosé M. Pardo
    • 1
  • Xosé R. Fdez-Vidal
    • 1
  1. 1.Centro de Investigación en Tecnoloxías da Información (CITIUS)Universidade de Santiago de CompostelaA CoruñaSpain

Personalised recommendations