Videogrammetry System for Wind Turbine Vibration Monitoring

  • Germán Rodríguez
  • Maria Fuciños
  • Xosé M. Pardo
  • Xosé R. Fdez-Vidal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9117)


Early detection of component failure in wind turbines produces a great value in savings. We present an external method for obtaining the tower vibrations using videogrammetry. We use a multi-view image acquisition system and a set of fiducial markers set on the surface of the tower. Targets are identified using a radial symmetry measure, their centre is located through elliptical model fitting, and they are recognized through a standard segmentation and decoding method. Finally targets are tracked and displacements processed. We have obtained good results in the tests performed and we intend to continue gathering data to build a classification system for identifying abnormal vibrations.


Videogrammetry Wind turbine monitoring Vibrations 



This work was funded by the Spanish Centro para el Desarrollo Tecnológico Industrial (CDTI), program under Grant ITC_20133096.


  1. 1.
    Lu, B., Li, Y., Wu, X., Yang, Z.: A review of recent advances in wind turbine condition monitoring and fault diagnosis. In: Power Electronics and Machines in Wind Applications, PEMWA, pp. 1–7. IEEE (2009)Google Scholar
  2. 2.
    Carden, P., Fanning, P.: Vibration based condition monitoring: a review. Struct. Health Monit. 3, 355–377 (2004)CrossRefGoogle Scholar
  3. 3.
    Sabel, J.C.: Optical 3D motion measurement. In: IEEE Instrumentation and Measurement Technology Conference. Brussels, Belgium (1996)Google Scholar
  4. 4.
    Bassett, K.: Vibration based structural health monitoring for utility scale wind turbines. Electronic Theses and Dissertations, Paper 173 (2010)Google Scholar
  5. 5.
    Felsberg, M., Sommer, G.: A new extension of linear signal processing for estimating local properties and detecting features. In: 22 DAGM Symposium Mustererkennung. Springer-Verlag (2000)Google Scholar
  6. 6.
    Kovesi P: Invariant measures of image features from phase information. Ph.D. Thesis, University of Western Australia (1996)Google Scholar
  7. 7.
    Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 40, 1489–1506 (2000)CrossRefGoogle Scholar
  8. 8.
    Chen, Z., Ye, Z., Chan, D.T.W., Peng, G.: Target recognition based on mathematical morphology. In: CAD/Graphics 2007, pp 457–460 (2007)Google Scholar
  9. 9.
    Yang, W., Tavner, P.J., Wilkinson, M.R.: Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train. IET Renew. Power Gener. 3(1), 1–11 (2009)CrossRefGoogle Scholar
  10. 10.
    Rijsbergen, C.J.V.: Information Retrieval, 2nd edn. Butterworth-Heinemann, Newton (1979)Google Scholar
  11. 11.
    Dosil, R., Pardo, X., Fdez-Vidal, X., Garca-Daz, A., Leboran, V.: A new radial symmetry measure applied to photogrammetry. Pattern Anal. Appl. 16, 637–646 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Germán Rodríguez
    • 1
  • Maria Fuciños
    • 1
  • Xosé M. Pardo
    • 1
  • Xosé R. Fdez-Vidal
    • 1
  1. 1.Centro de Investigación en Tecnoloxías da Información (CITIUS)Universidade de Santiago de CompostelaA CoruñaSpain

Personalised recommendations