A New Trajectory Based Motion Segmentation Benchmark Dataset (UdG-MS15)

  • Muhammad Habib Mahmood
  • Luca Zappella
  • Yago Díez
  • Joaquim Salvi
  • Xavier Lladó
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9117)

Abstract

Motion segmentation (MS) is an essential step in video analysis. Its quantitative and qualitative evaluation is largely dependent on the dataset used for testing. Although there are publicly available datasets such as Hopkins and FBMS, they have limitations in terms of number of motions, partial/complete occlusion, stopping motion, sequence length, and real life natural sequences. Due to these limitations, many recent proposals have reached nearly zero misclassification, especially for Hopkins, which leaves no room for quantitatively differentiating among proposals. In this paper, we present a new challenging trajectory based MS dataset of 15 sequences, where number of motions and sequence length have been largely increased as compared to the state of the art. An effort has been made to include all forms of distortions that are present in real life scenes. As a starting point, a preliminary benchmark evaluation using a recent and well known state of the art algorithm has been provided for this dataset.

Keywords

Motion segmentation Tracking Trajectory Benchmark Dataset 

References

  1. 1.
    Liu, G., Yan, S.: Latent low-rank representation for subspace segmentation and feature extraction. In: ICCV, pp. 1615–1622 (2011)Google Scholar
  2. 2.
    Zappella, L., Lladó, X., Provenzi, E., Salvi, J.: Enhanced local subspace affinity for feature-based motion segmentation. PR 44, 454–470 (2011)CrossRefGoogle Scholar
  3. 3.
    Zappella, L., Provenzi, E., Lladó, X., Salvi, J.: Adaptive motion segmentation algorithm based on the principal angles configuration. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 15–26. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  4. 4.
    Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. PAMI 35, 2765–2781 (2013)CrossRefGoogle Scholar
  5. 5.
    Zappella, L., Del Bue, A., Lladó, X., Salvi, J.: Joint estimation of segmentation and structure from motion. CVIU 117, 113–129 (2013)Google Scholar
  6. 6.
    Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. PAMI 32, 1832–1845 (2010)CrossRefGoogle Scholar
  7. 7.
    Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). PAMI 27, 1945–1959 (2005)CrossRefGoogle Scholar
  8. 8.
    Thakoor, N., Gao, J., Devarajan, V.: Multibody structure-and-motion segmentation by branch-and-bound model selection. ITIP 19, 1393–1402 (2010)MathSciNetGoogle Scholar
  9. 9.
    Wang, Y., Gong, J., Zhang, D., Gao, C., Tian, J., Zeng, H.: Large disparity motion layer extraction via topological clustering. ITIP 20, 43–52 (2011)MathSciNetGoogle Scholar
  10. 10.
    Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  11. 11.
    Ochs, P., Brox, T.: Higher order motion models and spectral clustering. In: CVPR, pp. 614–621 (2012)Google Scholar
  12. 12.
    Tron, R., Vidal, R.: A benchmark for the comparison of 3-D motion segmentation algorithms. In: CVPR, pp. 1–8 (2007)Google Scholar
  13. 13.
    Ochs, P., Malik, J., Brox, T.: Segmentation of moving objects by long term video analysis. PAMI 36, 1187–1200 (2014)CrossRefGoogle Scholar
  14. 14.
    Wang, H., Kläser, A., Schmid, C., Liu, C.: Dense trajectories and motion boundary descriptors for action recognition. IJCV 103, 1–20 (2013)MATHCrossRefGoogle Scholar
  15. 15.
    Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33, 500–513 (2011)CrossRefGoogle Scholar
  16. 16.
    Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by GPU-accelerated large displacement optical flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  17. 17.
    Badrinarayanan, V., Galasso, F., Cipolla, R.: Label propagation in video sequences. In: CVPR, pp. 3265–3272 (2010)Google Scholar
  18. 18.
    Budvytis, I., Badrinarayanan, V., Cipolla, R.: Label propagation in complex video sequences using semi-supervised learning. BMVC 2257, 2258–2259 (2010)Google Scholar
  19. 19.
    Vijayanarasimhan, S., Grauman, K.: Active frame selection for label propagation in videos. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 496–509. Springer, Heidelberg (2012) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Muhammad Habib Mahmood
    • 1
  • Luca Zappella
    • 2
  • Yago Díez
    • 1
  • Joaquim Salvi
    • 1
  • Xavier Lladó
    • 1
  1. 1.Computer Vision and Robotics Group (ViCOROB)University of GironaGironaSpain
  2. 2.Metaio GmbHMunichGermany

Personalised recommendations