Advertisement

Peripheral Nerve Segmentation Using Speckle Removal and Bayesian Shape Models

  • Hernán F. GarcíaEmail author
  • Juan J. Giraldo
  • Mauricio A. Álvarez
  • Álvaro A. Orozco
  • Diego Salazar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9117)

Abstract

In the field of medicine, ultrasound images have become a useful tool for visualizing nerve structures in the process of anesthesiology. Although, these images are commonly used in medical procedures such as peripheral nerve blocks. Their poor intelligibility makes it difficult for the anesthesiologists to perform this process accurately. Therefore, an automated segmentation methodology of the peripheral nerves can assist the experts in improving accuracy. This paper proposes a peripheral nerve segmentation method in medical ultrasound images, based on Speckle removal and Bayesian shape models. The method allows segmenting efficiently a given nerve by performing a Bayesian shape fitting. The experimental results show that performing a speckle removal before fitting the model, improves the accuracy due to the enhancement of the image to segment.

Keywords

Peripheral nerve segmentaion Speckle removal Bayesian shape models 

Notes

Acknowledgments

This research was developed under the project financed by the Pereira Technological University with code CIE 6-13-6. H.F. García is funded by Colciencias under the program: formación de alto nivel para la ciencia, la tecnología y la innovación - Convocatoria 617 de 2013.

References

  1. 1.
    Dougherty, G.: Medical Image Processing: Techniques and Applications. Biological and Medical Physics, Biomedical Engineering. Springer, New York (2011) CrossRefGoogle Scholar
  2. 2.
    Tao, Z., Tagare, H.D., Beaty, J.D.: Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images. IEEE Trans. Med. Imaging 25(11), 1483–1491 (2006)CrossRefGoogle Scholar
  3. 3.
    Katouzian, A., Angelini, E., Carlier, S., Suri, J., Navab, N., Laine, A.: A state-of-the-art review on segmentation algorithms in intravascular ultrasound (ivus) images. IEEE Trans. Inf. Technol. Biomed. 16(5), 823–834 (2012)CrossRefGoogle Scholar
  4. 4.
    Rueda, S., Fathima, S., Knight, C., Yaqub, M., Papageorghiou, A., Rahmatullah, B., Foi, A., Maggioni, M., Pepe, A., Tohka, J.: Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge. IEEE Trans. Med. Imaging 33, 797–813 (2013)CrossRefGoogle Scholar
  5. 5.
    Peng, Z., Wee, W., Lee, J.H.: Automatic segmentation of mr brain images using spatial-varying gaussian mixture and markov random field approach. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006, p. 80, June 2006Google Scholar
  6. 6.
    Noble, J., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8), 987–1010 (2006)CrossRefGoogle Scholar
  7. 7.
    Zhou, Y., Gu, L., Zhang, H.J.: Bayesian tangent shape model: estimating shape and pose parameters via bayesian inference. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003, pp. 109–116 (2003)Google Scholar
  8. 8.
    Xue, Z., Li, S.Z., Teoh, E.K.: Bayesian shape model for facial feature extraction and recognition. Pattern Recogn. 36, 2819–2833 (2004)CrossRefGoogle Scholar
  9. 9.
    Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision (2004)Google Scholar
  10. 10.
    Coupe, P., Hellier, P., Kervrann, C., Barillot, C.: Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 18(10), 2221–2229 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kervrann, C., Boulanger, J., Coupé, P.: Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 520–532. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  12. 12.
    Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Roy. Stat. Soc. Ser. B 61, 611–622 (1999)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hernán F. García
    • 1
    Email author
  • Juan J. Giraldo
    • 1
  • Mauricio A. Álvarez
    • 1
  • Álvaro A. Orozco
    • 1
  • Diego Salazar
    • 2
  1. 1.Grupo de Investigación en AutomáticaUniversidad Tecnológica de PereiraPereiraColombia
  2. 2.Hospital Santa MónicaRisaraldaColombia

Personalised recommendations