On the Convergence of Quantum and Distributed Computational Models of Consciousness

  • Susmit BagchiEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9120)


The brain is a neurological device capable to carry out distributed computation and express cognition. The computational models of consciousness and cognition have potential applications in bio-inspired computing paradigm. This paper proposes a computational model of consciousness as a cognitive function following neurophysiology and elements of distributed computing. It is illustrated that the distributed computational model of consciousness has a basis in the quantum mechanical models in explaining the neurological cognitive functions. The transitions between the computing model and quantum basis are explained and analyzed considering different linear Hermitian operators.


Cognition Hermitian Distributed computing Quantum mechanics Consciousness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fitch, W.T.: Toward a Computational Framework for Cognitive Biology: Unifying approaches from cognitive neuroscience and comparative cognition. Physics of Life Reviews (2014), doi: 10.1016/j.plrev, 04.005Google Scholar
  2. 2.
    Reggia, J.A.: The rise of machine consciousness: Studying consciousness with computational models. Neural Networks 44, 112–131 (2013)CrossRefGoogle Scholar
  3. 3.
    Lin, J., Yang, J.G.: Consciousness modeling: A neural computing approach. In: Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai. IEEE (2004)Google Scholar
  4. 4.
    Starzyk, J.A., Prasad, D.K.: A Computational model of machine consciousness. Int. J. Machine Consciousness 3(2) (2011)Google Scholar
  5. 5.
    Alfinito, E., Vitiello, G.: The dissipative quantum model of brain: how does memory localize in correlated neuronal domains. Information Sciences (Journal) 128(3-4), 217–229 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kurita, Y.: Indispensable role of quantum theory in the brain dynamics. Biosystems Journal 80(3), 263–272 (2005)CrossRefGoogle Scholar
  7. 7.
    Pribram, K.H.: Brain and Perception. Lawrence Erlbaum, Hillsdale (1991)Google Scholar
  8. 8.
    Ricciardi, L.M., Umezawa, H.: Brain physics and many-body problems. Kibernetik 4 (1967)Google Scholar
  9. 9.
    Williams, C.P.: Explorations in Quantum Computing, 2nd edn. Springer (2011)Google Scholar
  10. 10.
    Tegmark, M.: Quantum computation in brain microtubules? Decoherence and biological feasibility. Phys. Rev. E 61, 4194 (2000)CrossRefGoogle Scholar
  11. 11.
    Hameroff, S.R., Penrose, R.: Conscious events as orchestrated spacetime selections. Journal of Consciousness Studies 3(1), 36–53 (1996)Google Scholar
  12. 12.
    Beck, F., Eccles, J.: Quantum aspects of brain activity and the role of consciousness. Proceedings of the National Academy of Sciences of the USA 89, 11357–11361 (1992)CrossRefGoogle Scholar
  13. 13.
    Beck, F.: Quantum brain dynamics and consciousness. In: van Loocke, P. (ed.) The Physical Nature of Consciousness, pp. 83–116. Benjamins, Amsterdam (2001)CrossRefGoogle Scholar
  14. 14.
    Conte, E., Todarello, O., Federici, A., Vitiello, F., Lopane, M., Khrennikov, A., Zbilut, J.P.: Some remarks on an experiment suggesting quantum-like behavior of cognitive entities and formulation of an abstract quantum mechanical formalism to describe cognitive entity and its dynamics. Journal of Chaos, Solitons and Fractals 31, 1076–1088 (2009)CrossRefGoogle Scholar
  15. 15.
    Hagan, S., Hameroff, S.R., Tuszynski, J.A.: Quantum computation in brain microtubules: decoherence and biological feasibility, Phys. Rev. E 65(6), 061901 (2002)Google Scholar
  16. 16.
    Arbib, M.A., Caplan, D.: Neurolinguistics must be computational. Behavioral & Brain Sciences 2(3), 449–483 (1979)CrossRefGoogle Scholar
  17. 17.
    Poeppel, D., Embick, D.: Defining the relation between linguistics and neuroscience. In: Cutler, A. (ed.) Twenty-First Century Psycholinguistics: Four Cornerstones, pp. 103–120. Lawrence Erlbaum, London (2005)Google Scholar
  18. 18.
    Sun, R., Franklin, S.: Computational models of consciousness. In: Zelazo, P., Moscovitch, M. (eds.) Cambridge Handbook of Consciousness, pp. 151–174. Cambridge University Press (2007)Google Scholar
  19. 19.
    Rees, G., Kreiman, G., Koch, C.: Neural correlates of consciousness in humans. Nature Reviews Neuroscience 3, 261–270 (2002)CrossRefGoogle Scholar
  20. 20.
    Koch, C., Tononi, G.: Can machines be conscious? IEEE Spectrum, 55–59 (June 2008)Google Scholar
  21. 21.
    Fekete, T., Edelman, S.: Towards a computational theory of experience. Consciousness and Cognition 20, 807–827 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of InformaticsGyeongsang National UniversityJinjuSouth Korea

Personalised recommendations