Parallel Cost Function Determination on GPU for the Vehicle Routing Problem

  • Mieczysław Wodecki
  • Wojciech Bożejko
  • Szymon Jagiełło
  • Jarosław Pempera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9120)


The paper deals with parallel variants of optimization algorithms dedicated to solve transportation optimization issues. The problem derives from practice of logistics and vehicle routes planning. We propose parallelization method of the cost function determination dedicated to be executed on GPU architecture. The method can be used in metaheuristic algorithms as well as in exact approaches.


Global Memory Vehicle Route Problem Vehicle Route Parallel Genetic Algorithm Capacitate Vehicle Route Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alba, E., Dorronsoro, B.: Computing Nine New Best-So-Far Solutions for Capacitated VRP with a Cellular Genetic Algorithm. Information Processing Letters 98(6), 225–230 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bożejko, W., Wodecki, M.: Parallel genetic algorithm for minimizing total weighted completion time. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 400–405. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Bożejko, W., Wodecki, M.: Parallel Evolutionary Algorithm for the Traveling Salesman Problem. Journal of Numerical Analysis, Industrial and Applied Mathematics 2(3-4), 129–137 (2007)zbMATHGoogle Scholar
  4. 4.
    Bożejko, W., Wodecki, M.: Solving Permutational Routing Problems by Population-Based Metaheuristics. Computers & Industrial Engineering 57, 269–276 (2009)CrossRefGoogle Scholar
  5. 5.
    Bożejko, W., Uchroński, M., Wodecki, M.: The new golf neighborhood for the flexible job shop problem. In: Proceedings of the ICCS 2010. Procedia Computer Science, vol. 1, pp. 289–296. Elsevier (2010)Google Scholar
  6. 6.
    Bożejko, W., Pempera, J., Smutnicki, C.: Parallel Tabu Search Algorithm for the Hybrid Flow Shop Problem. Computers & Industrial Engineering 65, 466–474 (2013)CrossRefGoogle Scholar
  7. 7.
    Bożejko, W., Wodecki, M.: On the theoretical properties of swap multimuwes. Res. Lett. 35(2), 227–231 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dantzig, G.B., Ramser, J.H.: The Truck Dispatching Problem, INFORMS. Management Science 6(1), 80–91 (1959)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Doerner, K.F., Hartl, R.F., Kiechle, G., Lucká, M., Reimann, M.: Parallel ant systems for the capacitated vehicle routing problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 72–83. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Hasle, G., Kloster, O.: Industrial Vehicle Routing, SINTEF ICT, Department of Applied Mathematics, P.O. Box 124 Blindern, NO-0314 Oslo, NorwayGoogle Scholar
  11. 11.
    Jagiełło, S., Źelazny, D.: Solving Multi-criteria Vehicle Routing Problem by Parallel Tabu Search on GPU. Procedia Computer Science (18), 2529–2532 (2013)Google Scholar
  12. 12.
    Le Bouthillier, A., Crainic, T.: A cooperative parallel meta-heuristic for the vehicle routing problem with time windows. Computers & Operations Research 32, 1685–1708 (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Pempera, J., Smutnicki, C., Żelazny, D.: Optimizing bicriteria flow shop scheduling problem by simulated annealing algorithm. Procedia Computer Science (18), 936–945 (2013)Google Scholar
  14. 14.
    Rego, C.: Node-ejection chains for the vehicle routing problem: Sequential and parallel algorithms. Parallel Computing 27, 201–222 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Rudy, J., Żelazny, D.: Memetic algorithm approach for multi-criteria network scheduling. In: Proceeding of the International Conference on ICT Management for Global Competitiveness and Economic Growth in Emerging Economies (ICTM 2012), pp. 247–261 (2012)Google Scholar
  16. 16.
    Rudy, J., ?Zelazny, D.: GACO: a parallel evolutionary approach to multi-objective scheduling. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 307–320. Springer, Heidelberg (2015)Google Scholar
  17. 17.
    Toth, P., Vigo, D.: Vehicle Routing Problem, Society for Industrial and Applied Mathematics, Philadelphia (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mieczysław Wodecki
    • 1
  • Wojciech Bożejko
    • 2
  • Szymon Jagiełło
    • 2
  • Jarosław Pempera
    • 2
  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland
  2. 2.Department of Automatics, Mechatronics and Control Systems, Faculty of ElectronicsWrocław University of TechnologyWrocławPoland

Personalised recommendations