Measuring Complexity of Business Process Models Integrated with Rules

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9120)


Complexity assessment is often used in software and knowledge engineering for controlling the quality and improving models. In fact, complexity is one of the main factors affecting the understability and maintainability of models. Although there are many complexity measures that can be used in order to assess the complexity of process models or rule bases, the complexity of the integrated model of processes with rules is not addressed and constitutes a challenging issue. In this paper, we consider a new metric that is suitable for measuring the integrated models and present a short evaluation based on the selected cases of different size.


Business Process Rule Base Business Process Management Business Rule Short Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kluza, K.: Methods for Modeling and Integration of Business Processes with Rules. PhD thesis, AGH University of Science and Technology Supervisor: Grzegorz J. Nalepa (March 2015)Google Scholar
  2. 2.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Lindsay, A., Dawns, D., Lunn, K.: Business processes – attempts to find a definition. Information and Software Technology 45(15), 1015–1019 (2003)CrossRefGoogle Scholar
  4. 4.
    Charfi, A., Mezini, M.: Hybrid web service composition: Business processes md,,eet business rules. In: Proceedings of the 2nd International Conference on Service-Oriented Computing, ICSOC 2004, pp. 30–38. ACM, New York (2004)Google Scholar
  5. 5.
    Knolmayer, G.F., Endl, R., Pfahrer, M.: Modeling processes and workflows by business rules. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 16–29. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Kaczor, K., Nalepa, G.J., Łysik, Ł., Kluza, K.: Visual design of Drools rule bases using the XTT2 method. In: Katarzyniak, R., Chiu, T.-F., Hong, C.-F., Nguyen, N.T. (eds.) Semantic Methods. SCI, vol. 381, pp. 57–66. Springer, Heidelberg (2011), doi:10.1007/978-3-642-23418-7.Google Scholar
  7. 7.
    Geraci, A.: IEEE Standard Computer Dictionary: Compilation of IEEE Standard Computer Glossaries. IEEE Press (1991)Google Scholar
  8. 8.
    Coenen, F., Bench-Capon, T., Boswell, R., Dibie-Barthélemy, J., Eaglestone, B., Gerrits, R., Grégoire, E., Ligęza, A., Laita, L., Owoc, M., Sellini, F., Spreeuwenberg, S., Vanthienen, J., Vermesan, A., Wiratunga, N.: Validation and verification of knowledge-based systems: report on eurovav99. Knowl. Eng. Rev. 15(2), 187–196 (2000)CrossRefGoogle Scholar
  9. 9.
    Szpyrka, M., Nalepa, G.J., Ligęza, A., Kluza, K.: Proposal of formal verification of selected BPMN models with Alvis modeling language. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) Intelligent Distributed Computing V. SCI, vol. 382, pp. 249–255. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Nalepa, G.J., Bobek, S., Ligęza, A., Kaczor, K.: HalVA – rule analysis framework for XTT2 rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 337–344. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Kluza, K., Nalepa, G.J.: Proposal of square metrics for measuring business process model complexity. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the Federated Conference on Computer Science and Information Systems – FedCSIS 2012, Wroclaw, Poland, September 9-12, pp. 919–922 (2012)Google Scholar
  12. 12.
    Cardoso, J.: Control-flow complexity measurement of processes and weyuker’s properties. In: 6th International Enformatika Conference. Transactions on Enformatika, Systems Sciences and Engineering, Budapest, Hungary, October 26-28, vol. 8, pp. 213–218 (2005)Google Scholar
  13. 13.
    Cardoso, J.: About the data-flow complexity of web processes. In: Proceedings from the 6th International Workshop on Business Process Modeling, Development, and Support: Business Processes and Support Systems: Design for Flexibility. The 17th Conference on Advanced Information Systems Engineering (CAiSE 2005) June 13-17, Porto, Portugal, pp. 67–74 (2005)Google Scholar
  14. 14.
    OMG: Business Process Model and Notation (BPMN): Version 2.0 specification. Technical Report formal/2011-01-03, Object Management Group (January 2011)Google Scholar
  15. 15.
    Nalepa, G.J., Ligęza, A., Kaczor, K.: Formalization and modeling of rules using the XTT2 method. International Journal on Artificial Intelligence Tools 20(6), 1107–1125 (2011)CrossRefGoogle Scholar
  16. 16.
    Nalepa, G.J.: Semantic Knowledge Engineering. A Rule-Based Approach. Wydawnictwa AGH, Kraków (2011)Google Scholar
  17. 17.
    Kluza, K., Nalepa, G.J.: Automatic generation of business process models based on attribute relationship diagrams. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013 Workshops. LNBIP, vol. 171, pp. 185–197. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on complexity of process models. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 117–128. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Latva-Koivisto, A.M.: Finding a complexity for business process models. Technical report, Helsinki University of Technology (February 2001)Google Scholar
  20. 20.
    Sánchez-González, L., García, F., Mendling, J., Ruiz, F., Piattini, M.: Prediction of business process model quality based on structural metrics. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 458–463. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Mendling, J.: Metrics for business process models. In: Mendling, J. (ed.) Metrics for Process Models. LNBIP, vol. 6, pp. 103–133. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Mendling, J.: Verification of epc soundness. In: Mendling, J. (ed.) Metrics for Process Models. LNBIP, vol. 6, pp. 59–102. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Cardoso, J.: How to measure the control-flow complexity of web processes and workflows. In: Fischer, L. (ed.) Workflow Handbook 2005, pp. 199–212. Future Strategies Inc., Lighthouse Point (2005)Google Scholar
  24. 24.
    Aguilar, E.R., Ruiz, F., García, F., Piattini, M.: Applying software metrics to evaluate business process models. CLEI Electronic Journal 9(1) (June 2006)Google Scholar
  25. 25.
    Laue, R., Gruhn, V.: Complexity metrics for business process models. In: Witold Abramowicz, H.C.M. (ed.) Business Information Systems, 9th International Conference on Business Information Systems, BIS 2006, Klagenfurt, Austria, May 31-June 2, pp. 1–12 (2006)Google Scholar
  26. 26.
    Kluza, K., Nalepa, G.J., Lisiecki, J.: Square complexity metrics for business process models. In: Mach-Król, M., Pełech-Pilichowski, T. (eds.) Advances in Business ICT. AISC, vol. 257, pp. 89–107. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  27. 27.
    Thammarak, K.: Survey complexity metrics for reusable business process. In: Proceedings from 1st National Conference on Applied Computer Technology and Information System (ACTIS 2010), pp. 18–22. Bangkok Suvarnabhumi College (2010)Google Scholar
  28. 28.
    Muketha, G., Ghani, A.A.A., Selamat, M.H., Atan, R.: A survey of business process complexity metrics. Information Technology Journal 9(7), 1336–1344 (2010)CrossRefGoogle Scholar
  29. 29.
    Becker, M., Laue, R.: A comparative survey of business process similarity measures. Computers in Industry 63(2), 148–167 (2012)CrossRefGoogle Scholar
  30. 30.
    Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business process models: Metrics and evaluation. Information Systems 36(2), 498–516 (2011)CrossRefGoogle Scholar
  31. 31.
    Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 166–181. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Suen, C.Y., Grogono, P.D., Shinghal, R., Coallier, F.: Verifying, validating, and measuring the performance of expert systems. Expert Systems with Applications 1(2), 93–102 (1990)CrossRefGoogle Scholar
  33. 33.
    Kaisler, S.H.: Expert system metrics. In: Proceedings of the 1986 IEEE International Conference on Systems, Man, and Cybernetics, vol. 1, pp. 114–120 (1986)Google Scholar
  34. 34.
    Chen, Z., Suen, C.Y.: Complexity metrics for rule-based expert systems. In: Proceedings of the International Conference on Software Maintenance, pp. 382–391. IEEE (1994)Google Scholar
  35. 35.
    OMG: Semantics of Business Vocabulary and Business Rules (SBVR). Technical Report dtc/06-03-02, Object Management Group (2006)Google Scholar
  36. 36.
    Kluza, K., Maślanka, T., Nalepa, G.J., Ligęza, A.: Proposal of representing BPMN diagrams with XTT2-based business rules. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) Intelligent Distributed Computing V. SCI, vol. 382, pp. 243–248. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  37. 37.
    Adrian, W.T., Ciężkowski, P., Kaczor, K., Ligęza, A., Nalepa, G.J.: Web-based knowledge acquisition and management system supporting collaboration for improving safety in urban environment. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2012. CCIS, vol. 287, pp. 1–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  38. 38.
    Nalepa, G.J., Bobek, S.: Rule-based solution for context-aware reasoning on mobile devices. Computer Science and Information Systems 11(1), 171–193 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations