Clustering Algorithm Based on Molecular Dynamics with Nose-Hoover Thermostat. Application to Japanese Candlesticks

  • Leszek J. ChmielewskiEmail author
  • Maciej Janowicz
  • Arkadiusz Orłowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9120)


A hybrid pattern clustering algorithm connecting Particle Swarm Optimization with Simulated Annealing is proposed. The swarm particles are directly associated with the centroids of each cluster. They are assumed to move in the phase space associated under the influence of a potential generated by each pattern to be partitioned and interacting with each other. Thus, the problem of partitioning acquires a direct physical interpretation. The motion of swarm particles is simulated with the help of a thermal bath represented by one additional dynamical variable within the Nose-Hoover formalism. The temperature is decreased at each step in the dynamics of the swarm providing the resemblance to the Simulated Annealing. Clustering of the Japanese candlesticks which appear in the dynamics of assets in the Warsaw stock market is used as an example.


Clustering Molecular dynamics Japanese candlesticks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Evangelou, I.E., Hadjimitsis, D.G., Lazakidou, A.A., Clayton, C.: Data Mining and Knowledge Discovery in Complex Image Data using Artificial Neural Networks. In: Workshop on Complex Reasoning on Geographical Data, Cyprus (2001)Google Scholar
  2. 2.
    Lillesand, T., Keifer, R.: Remote Sensing and Image Interpretation. John Wiley and Sons, New York (1994)Google Scholar
  3. 3.
    Rao, M.R.: Cluster Analysis and Mathematical Programming. J. Am. Stat. Assoc. 22, 622 (1994)Google Scholar
  4. 4.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley and Sons, New York (1973)Google Scholar
  5. 5.
    Everitt, B.S.: Cluster Analysis. Halsted Press (1993)Google Scholar
  6. 6.
    Xu, R., Wunsch, D.: Clustering. IEEE Press Series on Computational Intelligence (2008)Google Scholar
  7. 7.
    Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classification. Biometrics 21, 768 (1965)Google Scholar
  8. 8.
    Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers C-20, 6886 (1971)Google Scholar
  9. 9.
    Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)Google Scholar
  10. 10.
    Mao, J., Jain, A.K.: Artificial neural networks for feature extraction and multivariate data projection. IEEE Trans. Neural Networks 6, 296 (1995)CrossRefGoogle Scholar
  11. 11.
    Pal, N.R., Bezdek, J.C., Tsao, E.C.K.: Generalized clustering networks and Kohonen’s self-organizing scheme. IEEE Trans. Neural Networks 4, 549 (1993)CrossRefGoogle Scholar
  12. 12.
    Kohonen, T.: Self-Organizing Maps. Series in Information Sciences, vol. 30. Springer, Berlin (1995)Google Scholar
  13. 13.
    Falkenauer, E.: Genetic Algorithms and Grouping Problems. John Wiley and Sons, New York (1998)Google Scholar
  14. 14.
    Paterlini, S., Minerva, T.: Evolutionary Approaches for Cluster Analysis. In: Bonarini, A., Masulli, F., Pasi, G. (eds.) Soft Computing Applications, pp. 167–178. Springer, Berlin (2003)Google Scholar
  15. 15.
    Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645 (2005)CrossRefGoogle Scholar
  16. 16.
    Rokach, L., Maimon, O.: Clustering Methods. In: Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, Berlin (2005)CrossRefGoogle Scholar
  17. 17.
    Mitra, S., Pal, S.K., Mitra, P.: Data mining in soft computing framework: A survey. IEEE Transactions on Neural Networks 13(3) (2002)Google Scholar
  18. 18.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of cooperating agents. IEEE Trans. Systems Man and Cybernetics, Part B: Cybernetics 26, 21 (1996)CrossRefGoogle Scholar
  19. 19.
    Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolutionary Computing 1, 5366 (1997)CrossRefGoogle Scholar
  20. 20.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  21. 21.
    Omran, M., Salman, A., Engelbrecht, A.P.: Image Classification using Particle Swarm Optimization. In: Proc. Conference on Simulated Evolution and Learning, vol. 1, pp. 370–374 (2002)Google Scholar
  22. 22.
    Omran, M., Engelbrecht, A.P., Salman, A.: Particle Swarm Optimization Method for Image Clustering. International Journal of Pattern Recognition and Artificial Intelligence 19, 297 (2005)CrossRefGoogle Scholar
  23. 23.
    Das, S., Abraham, A.: Pattern Clustering Using a Swarm Intelligence Approach. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 469–504. Springer, Berlin (2010)Google Scholar
  24. 24.
    Nose, S.: A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511 (1984)CrossRefGoogle Scholar
  25. 25.
    Hoover, W.G.: Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)CrossRefGoogle Scholar
  26. 26.
    Fukuda, I.: Application of the Nose-Hoover method to optimization problems. Phys. Rev. E 64(1), 16203 (2001)CrossRefGoogle Scholar
  27. 27.
    Murphy, J.: Technical Analysis of Financial Markets. New York Institute of Finance (1999)Google Scholar
  28. 28.
    Wikipedia. Candlestick chart – Wikipedia, the free encyclopedia (2014), (accessed December 19, 2014)
  29. 29.
    Verlet, L.: Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard Jones molecules. Phys. Rev. 159(1), 98 (1967)CrossRefGoogle Scholar
  30. 30.
    Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 76, 648 (1982)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Leszek J. Chmielewski
    • 1
    Email author
  • Maciej Janowicz
    • 1
  • Arkadiusz Orłowski
    • 1
  1. 1.Faculty of Applied Informatics and Mathematics (WZIM)Warsaw University of Life Sciences (SGGW)WarsawPoland

Personalised recommendations