Advertisement

A Robust Heuristic for the Multidimensional A-star/Wavefront Hybrid Planning Algorithm

  • Igor Wojnicki
  • Sebastian Ernst
  • Wojciech Turek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9120)

Abstract

Automated planning using heuristic search or gradient algorithms is a feasible method for solving many planning problems. However, if planning is performed for several (possibly colliding) entities, the size of the state space increases dramatically. If these entities have limited predictability, observability or controllability, a single plan can no longer suffice, and robust multi-variant planning is no longer feasible due to scale. This paper presents the A-star/Wavefront hybrid planning algorithm and proposes a new heuristic for selection of its deviation zones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turek, W., Cetnarowicz, K., Zaborowski, W.: Software agent systems for improving performance of multi-robot groups. Fundam. Inf. 112(1), 103–117 (2011)Google Scholar
  2. 2.
    Blaszczyk, P., Turek, W., Cetnarowicz, K.: Formal model for micro-scale traffic simulation and control. In: 2013 18th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 305–310 (August 2013)Google Scholar
  3. 3.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kaufmann Publishers Inc., San Francisco (2004)Google Scholar
  4. 4.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pearson Education (2010)Google Scholar
  5. 5.
    Bonet, B.: Planning as heuristic search. Artificial Intelligence 129(1-2), 5–33 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Klimek, R., Wojnicki, I., Ernst, S.: State-space reduction through preference modeling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 363–374. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)CrossRefGoogle Scholar
  8. 8.
    Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality of A*. J. ACM 32(3), 505–536 (1985)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Igor Wojnicki
    • 1
  • Sebastian Ernst
    • 1
  • Wojciech Turek
    • 1
  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations