Advertisement

OpenCL Implementation of PSO Algorithm for the Quadratic Assignment Problem

  • Piotr SzwedEmail author
  • Wojciech Chmiel
  • Piotr Kadłuczka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9120)

Abstract

This paper presents a Particle Swarm Optimization (PSO) algorithm for the Quadratic Assignment Problem (QAP) implemented on OpenCL platform. Motivations to our work were twofold: firstly we wanted to develop a dedicated algorithm to solve the QAP showing both time and optimization performance, secondly we planned to check, if the capabilities offered by popular GPUs can be exploited to accelerate hard optimization tasks requiring high computational power. We were specifically targeting low-cost popular devices, with limited capabilities. The paper discusses the algorithm and its parallel implementation, as well as reports results of tests.

Keywords

QAP PSO OpenCL GPU calculation Particle swarm optimization Discrete optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bermudez, R., Cole, M.H.: A genetic algorithm approach to door assignments in breakbulk terminals. Tech. Rep. MBTC-1102, Mack-Blackwell Transportation Center, University of Arkansas, Fayetteville, Arkansas (2001)Google Scholar
  2. 2.
    Burkard, R., Karisch, S., Rendl, F.: Qaplib-a quadratic assignment problem library. Journal of Global Optimization 10(4), 391–403 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Burkard, R., Karisch, S., Rendl, F.: QAPLIB a Quadratic Assignment Problem library. Journal of Global Optimization 10(4), 391–403 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chmiel, W.: Evolution Algorithms for optimisation of task assignment problem with quadratic cost function. Ph.D. thesis, AGH Technology University, Poland (2004)Google Scholar
  5. 5.
    Chmiel, W., Kadłuczka, P., Packanik, G.: Performance of swarm algorithms for permutation problems. Automatyka 15(2), 117–126 (2009)Google Scholar
  6. 6.
    Clerc, M.: Discrete particle swarm optimization, illustrated by the traveling salesman problem. In: Onwubolu, G.C., Babu, B.V. (eds.) New Optimization Techniques in Engineering. STUDFUZZ, vol. 141, pp. 219–239. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43 (October 1995)Google Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)Google Scholar
  9. 9.
    Grötschel, M.: Discrete mathematics in manufacturing. In: Malley, R.E.O. (ed.) ICIAM 1991: Proceedings of the Second International Conference on Industrial and Applied Mathematics, pp. 119–145. SIAM (1991)Google Scholar
  10. 10.
    Howes, L., Munshi, A.: Aparapi - AMD, http://developer.amd.com/tools-and-sdks/opencl-zone/aparapi/ (last accessed: January 2015)
  11. 11.
    Howes, L., Munshi, A.: The OpenCL specification, https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf (last accessed: January 2015)
  12. 12.
    Koopmans, T.C., Beckmann, M.J.: Assignment problems and the location of economic activities. Econometrica 25, 53–76 (1957)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Liu, H., Abraham, A., Zhang, J.: A particle swarm approach to quadratic assignment problems. In: Saad, A., Dahal, K., Sarfraz, M., Roy, R. (eds.) Soft Computing in Industrial Applications. ASC, vol. 39, pp. 213–222. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Mason, A., Rönnqvist, M.: Solution methods for the balancing of jet turbines. Computers & OR 24(2), 153–167 (1997)CrossRefGoogle Scholar
  15. 15.
    Onwubolu, G.C., Sharma, A.: Particle swarm optimization for the assignment of facilities to locations. In: Onwubolu, G.C., Babu, B.V. (eds.) New Optimization Techniques in Engineering. STUDFUZZ, vol. 141, pp. 567–584. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Phillips, A.T., Rosen, J.B.: A quadratic assignment formulation of the molecular conformation problem. Journal of Global Optimization 4, 229–241 (1994)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM 23(3), 555–565 (1976)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Stone, J.E., Gohara, D., Shi, G.: Opencl: A parallel programming standard for heterogeneous computing systems. Computing in Science & Engineering 12(3), 66 (2010)CrossRefGoogle Scholar
  19. 19.
    Taillard, E.D.: Comparison of iterative searches for the quadratic assignment problem. Location Science 3(2), 87–105 (1995)CrossRefGoogle Scholar
  20. 20.
    Ugi, I., Bauer, J., Brandt, J., Friedrich, J., Gasteiger, J., Jochum, C., Schubert, W.: Neue anwendungsgebiete fur computer in der chemie. Angewandte Chemie 91(2), 99–111 (1979)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Piotr Szwed
    • 1
    Email author
  • Wojciech Chmiel
    • 1
  • Piotr Kadłuczka
    • 1
  1. 1.AGH University of Science and TechnologyKarkowPoland

Personalised recommendations