What’s Next for VST: Electromagnetic Follow-Up of Gravitational Waves Events

Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 42)


A big step forward in the long-standing quest for gravitational waves (GWs) will be made next year when the LIGO and VIRGO collaborations will start regular operations of their sensitive, upgraded interferometers. It is crucial that the electromagnetic counterparts of GW events are securely identified, a difficult task because of the large size of error box expected to be returned by the interferometers (dozens to hundreds of square degrees). Our group is tackling the challenge by organizing a follow-up campaign covering the widest possible range of the electromagnetic spectrum. The optical counterpart will be covered by the VST thanks to its characteristics. The sensitivity and optical quality of the telescope will allow us to probe faint transients (e.g. kilonovae and short GRBs) that are among the most promising GW source candidates.


Black Hole Neutron Star Gravitational Wave Core Collapse Supernova Short GRBs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aasi, J., et al.: (2013). Prospects for observing and localizing gravitational-wave transients with advanced LIGO and advanced virgo. arXiv:1304.0670Google Scholar
  2. 2.
    Abadie, J., et al.: TOPICAL REVIEW: predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. CQG 27(17) (2010). Art. No. 173001Google Scholar
  3. 3.
    Abadie, J., et al.: Search for gravitational wave bursts from six magnetars. ApJ 734, id. L35, 9 (2011)Google Scholar
  4. 4.
    Abadie, J., et al.: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Phys. Rev. D 83(4), id. 042001 (2011)Google Scholar
  5. 5.
    Abbott, B.P., et al.: LIGO: the laser interferometer gravitational-wave observatory. Rep. Prog. Phys. 72, 076901 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Accadia, T., et al.: Virgo: a laser interferometer to detect gravitational waves. JINST 7(03), 3012 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Berger, E.: The environments of short-duration gamma-ray bursts and implications for their progenitors. NewAR 55(1), 1 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Capaccioli, M., Schipani, P.: The VLT survey telescope opens to the sky: history of a commissioning. Msngr 146, 2 (2011)ADSGoogle Scholar
  9. 9.
    Clocchiatti, A., Suntzeff, N.B., Covarrubias, R., Candia, P.: The ultimate light curve of SN 1998bw/GRB 980425. AJ 141, 163 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Guetta, D., Della Valle, M.: On the rates of gamma-ray bursts and type Ib/c supernovae. ApJ 657, L73 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Harry, G.M.: Advanced LIGO: the next generation of gravitational wave detectors. CQG 27, 084006 (2010)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Hjorth, J., Bloom, J.S.: The gamma-ray burst - supernova connection. Camb. Astrophys. Ser. 51, 169 (2012)Google Scholar
  13. 13.
    Kann, D.A., Klose, S., Zhang, B., et al.: The afterglows of swift-era gamma-ray bursts. I. Comparing pre-swift and swift-era long/soft (type II) GRB optical afterglows. ApJ 720(2), 1513 (2010)Google Scholar
  14. 14.
    Kann, D.A., Klose, S., Zhang, B., et al.: The afterglows of swift-era gamma-ray bursts. II. Type I GRB versus type II GRB optical afterglows. ApJ 734(2), 47 (2011)Google Scholar
  15. 15.
    Kokkotas, K., Schmidt, B.: Quasi-normal modes of stars and black holes. LRR 2, 2 (1999)ADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    Kokkotas, K.D., Stergioulas, N.: Gravitational waves from compact sources. In: Mourào, A.M. (ed.) New Worlds in Astroparticle Physics, Proceedings of the Fifth International Workshop. Held 8–10 January 2005 in Faro, Portugal, pp. 25–46. World Scientific (2006)Google Scholar
  17. 17.
    Kuijken, K., Bender, R., Cappellaro, E., et al.: OmegaCAM: the 16k×16k CCD camera for the VLT survey telescope. Msngr 110, 15 (2002)ADSGoogle Scholar
  18. 18.
    Meszaros, P.: Gamma-ray bursts. Rep. Prog. Phys. 69, 2259 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Metzger, B.D., Martínez-Pinedo, G., Darbha, S., et al.: Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. MNRAS 406, 2650 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Ott, C.D.: Probing the core-collapse supernova mechanism with gravitational waves. CQG 26, id. 204015 (2009)Google Scholar
  21. 21.
    Ott, C.D., Abdikamalov, E., Mösta, P., et al.: General-relativistic simulations of three-dimensional core-collapse supernovae. ApJ 768, 115 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Piran, T., Nakar, E., Rosswog, S.: The electromagnetic signals of compact binary mergers. MNRAS 430(3), 2121 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Singer, L.P., Cenko, S.B., Kasliwal, M.M., et al.: Discovery and redshift of an optical afterglow in 71 deg2: iPTF13bxl and GRB 130702A. ApJ 776, L34 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Singer, L.P., Kasliwal, M.M., Cenko, S.B.: The needle in the 100 deg 2 Haystack: uncovering afterglows of Fermi GRBs with the palomar transient factory. ApJ 806(1), 21 (2015)CrossRefGoogle Scholar
  25. 25.
    Taylor, J.H., Weisberg, J.M.: A new test of general relativity – gravitational radiation and the binary pulsar PSR 1913+16. ApJ 253, 908 (1982)ADSCrossRefGoogle Scholar
  26. 26.
    van Eerten, H.J., MacFadyen, A.I.: Synthetic off-axis light curves for low-energy gamma-ray bursts. ApJ 733, 2, L37, 7 (2011)Google Scholar
  27. 27.
    van Putten, M.H.P.M.: Gravitational waves from core-collapse supernovae and long GRBsLong GRBs and massive stellar explosions from frame dragging around black holes. ASPC 482, 177 (2014)ADSGoogle Scholar
  28. 28.
    Wallace, J., Burrows, A., Dolence, J.: Detecting the supernova breakout burst in terrestrial neutrino detectors. ApJ 817(2), 182, 24 (2016)Google Scholar
  29. 29.
    Woosley, S.E., Bloom, J.S.: The supernova gamma-ray burst connection. ARA&A 44, 507 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Zhang, B., Meszaros, P.: Gamma-ray bursts: progress, problems & prospects. IJMPA 19, 2385 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.INAF-Osservatorio Astronomico di CapodimonteNaplesItaly
  2. 2.INAF–Osservatorio Astronomico di PadovaPadovaItaly
  3. 3.INAF – Osservatorio Astronomico di RomaMonte Porzio Catone (RM)Italy
  4. 4.Universit degli studi di UrbinoUrbinoItaly
  5. 5.INAF – Osservatorio Astronomico di BreraMilanItaly
  6. 6.INAF-Istituto di Astrofisica Spaziale e Fisica CosmicaBolognaItaly
  7. 7.Scuola Normale SuperiorePisaItaly

Personalised recommendations