Advertisement

Singular Spectrum Analysis for Astronomical Time Series: Constructing a Parsimonious Hypothesis Test

  • G. GrecoEmail author
  • D. Kondrashov
  • S. Kobayashi
  • M. Ghil
  • M. Branchesi
  • C. Guidorzi
  • G. Stratta
  • M. Ciszak
  • F. Marino
  • A. Ortolan
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 42)

Abstract

We present a data-adaptive spectral method – Monte Carlo Singular Spectrum Analysis (MC-SSA) – and its modification to tackle astrophysical problems. Through numerical simulations we show the ability of the MC-SSA in dealing with 1∕f β power-law noise affected by photon counting statistics. Such noise process is simulated by a first-order autoregressive, AR(1) process corrupted by intrinsic Poisson noise. In doing so, we statistically estimate a basic stochastic variation of the source and the corresponding fluctuations due to the quantum nature of light. In addition, MC-SSA test retains its effectiveness even when a significant percentage of the signal falls below a certain level of detection, e.g., caused by the instrument sensitivity. The parsimonious approach presented here may be broadly applied, from the search for extrasolar planets to the extraction of low-intensity coherent phenomena probably hidden in high energy transients.

Keywords

Colored Noise Singular Spectrum Analysis Poisson Noise Extrasolar Planet Astrophysical Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

MB, GG and GS acknowledge the financial support of the Italian Ministry of Education, University and Research (MIUR) through grant FIRB 2012 RBFR12PM1F. CG acknowledges the PRIN MIUR project on “Gamma Ray Bursts: from progenitors to physics of the prompt emission process” (Prot. 2009 ERC3HT). MG and DK received support from the U.S. National Science Foundation (grant DMS-1049253) and from the U.S. Office of Naval Research (MURI grant N00014-12-1-0911).

References

  1. 1.
    Allen, M. R., & Smith, L. A. Monte Carlo SSA: detecting irregular oscillations in the presence of coloured noise. J. Climate. 9, 3373–3404 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Ghil, M., Allen M. R., Dettinger M. D., et al. Advanced spectral methods for climatic time series. Rev. Geophys. 40, 1–41 (2002)CrossRefGoogle Scholar
  3. 3.
    Greco, G., Rosa, R., Beskin, G., et al. Evidence of deterministic components in the apparent randomness of GRBs: clues of a chaotic dynamic. Sci. Rep. 1, 91 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Pont, F., Zucker, S., & Queloz, D. The effect of red noise on planetary transit detection. MNRAS 373, 231–242 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Vaughan, S. A Bayesian test for periodic signals in red noise. MNRAS 402, 307–320. (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Vautard, R., & Ghil, M. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35, 395–424 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • G. Greco
    • 1
    • 2
    Email author
  • D. Kondrashov
    • 3
  • S. Kobayashi
    • 5
  • M. Ghil
    • 3
    • 4
  • M. Branchesi
    • 1
  • C. Guidorzi
    • 6
  • G. Stratta
    • 1
  • M. Ciszak
    • 7
  • F. Marino
    • 7
  • A. Ortolan
    • 8
  1. 1.Università degli Studi di Urbino “Carlo Bo” – DiSBeFUrbinoItaly
  2. 2.INFNSezione di FirenzeSesto FiorentinoItaly
  3. 3.University of California – AOS and IGPPLos AngelesUSA
  4. 4.Ecole Normale Supérieure – CNRS and IPSLParis Cedex 05France
  5. 5.ARI – Liverpool John Moores UniversityLiverpoolUK
  6. 6.Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly
  7. 7.CNR-Istituto Nazionale di OtticaFirenzeItaly
  8. 8.INFNLaboratori Nazionali di LegnaroLegnaroItaly

Personalised recommendations