Toward Work Groups Classification Based on Probabilistic Neural Network Approach

  • Christian Napoli
  • Giuseppe Pappalardo
  • Emiliano Tramontana
  • Robert K. Nowicki
  • Janusz T. Starczewski
  • Marcin Woźniak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9119)

Abstract

This paper presents the application of some Computational Intelligence methods for obtaining a classifier analysing employees to form work groups. The proposed bio-inspired solution analyses employees using data gathered from their professional attitudes and skills, then suggests how to form groups of human resources within a company that can effectively work together. The same proposed tool provides employers with a fair and effective means for employee evaluation. In our approach, employee profiles are processed by a dedicated Radial Basis Probabilistic Neural Network based classifier, which finds non-explicit custom-created groups. The accuracy of the classifier is very high, revealing the potential efficacy of the proposed bio-inspired classification system.

References

  1. 1.
    Ahn, Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of huge online social networking services. In: Proceedings of World Wide Web, pp. 835–844. ACM (2007)Google Scholar
  2. 2.
    Barabási, A.L.: Scale-free networks: a decade and beyond. Science 325(5939), 412–413 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonanno, F., Capizzi, G., Napoli, C.: Some remarks on the application of rnn and prnn for the charge-discharge simulation of advanced lithium-ions battery energy storage. In: 2012 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), pp. 941–945. IEEE (2012)Google Scholar
  4. 4.
    Bonanno, F., Capizzi, G., Lo Sciuto, G., Napoli, C., Pappalardo, G., Tramontana, E.: A cascade neural network architecture investigating surface plasmon polaritons propagation for thin metals in openMP. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 22–33. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Borowik, G., Woźniak, M., Fornaia, A., Giunta, R., Napoli, C., Pappalardo, G., Tramontana, E.: A software architecture assisting workflow executions on cloud resources. International Journal of Electronics and Telecommunications 61(1), 17–23 (2015)CrossRefGoogle Scholar
  6. 6.
    Capizzi, G., Bonanno, F., Napoli, C.: Recurrent neural network-based control strategy for battery energy storage in generation systems with intermittent renewable energy sources. In: 2011 International Conference on Clean Electrical Power (ICCEP), pp. 336–340 (2011)Google Scholar
  7. 7.
    Capizzi, G., Napoli, C., Paternò, L.: An innovative hybrid neuro-wavelet method for reconstruction of missing data in astronomical photometric surveys. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 21–29. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Duch, W.: Towards comprehensive foundations of computational intelligence. In: Duch, W., Maíndziuk, J. (eds.) Challenges for Computational Intelligence. SCI, vol. 63, pp. 261–316. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Duch, W., Jankowski, N.: Survey of neural transfer functions. Neural Computing Surveys 2(1), 163–212 (1999)Google Scholar
  10. 10.
    Gabryel, M., Nowicki, R.K., Woźniak, M., Kempa, W.M.: Genetic cost optimization of the GI/M/1/N finite-buffer queue with a single vacation policy. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 12–23. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Gabryel, M., Woźniak, M., Nowicki, R.K.: Creating learning sets for control systems using an evolutionary method. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) SIDE 2012 and EC 2012. LNCS, vol. 7269, pp. 206–213. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Huang, D., Ma, S.: A new radial basis probabilistic neural network model. In: Proceedings of Conference on Signal Processing, vol. 2. IEEE (1996)Google Scholar
  13. 13.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  14. 14.
    Marszałek, Z., Połap, D., Woźniak, M.: On preprocessing large data sets by the use of triple merge sort algorithm. In: Proceedings of International Conference on Advances in Information Processing and Communication Technologies - IPCT 2014, Santa Barbara, California, USA, pp. 65–72. The IRED, Seek Digital Library (2014)Google Scholar
  15. 15.
    Miller, K., Griffiths, T., Jordan, M.: Nonparametric latent feature models for link prediction. In: Advances in Neural Information Processing Systems, vol. 22, pp. 1276–1284 (2009)Google Scholar
  16. 16.
    Napoli, C., Bonanno, F., Capizzi, G.: Exploiting solar wind time series correlation with magnetospheric response by using an hybrid neuro-wavelet approach. Proceedings of the International Astronomical Union 6(S274), 156–158 (2010)CrossRefGoogle Scholar
  17. 17.
    Napoli, C., Bonanno, F., Capizzi, G.: An hybrid neuro-wavelet approach for long-term prediction of solar wind. Proceedings of the International Astronomical Union 6(S274), 247–249 (2010)Google Scholar
  18. 18.
    Napoli, C., Pappalardo, G., Tramontana, E.: A hybrid neuro–wavelet predictor for QoS control and stability. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS, vol. 8249, pp. 527–538. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Napoli, C., Pappalardo, G., Tramontana, E.: Using modularity metrics to assist move method refactoring of large systems. In: 2013 7th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), pp. 529–534. IEEE (2013)Google Scholar
  20. 20.
    Napoli, C., Pappalardo, G., Tramontana, E., Marszałek, Z., Połap, D., Woźniak, M.: Simplified firefly algorithm for 2d image key-points search. In: 2014 IEEE Symposium on Computational Intelligence for Human-like Intelligence, pp. 118–125. IEEE (2014)Google Scholar
  21. 21.
    Nowak, A., Woźniak, M.: Analysis of the active module mechatronical systems. In: Proceedings of Mechanika 2008 - ICM 2008, Kaunas, Liethuania, pp. 371–376. Kaunas University of Technology Press (2008)Google Scholar
  22. 22.
    Nowak, A., Woźniak, M.: Multiresolution derives analysis of module mechatronical systems. Mechanika 6(74), 45–51 (2008)Google Scholar
  23. 23.
    Woźniak, M.: On applying cuckoo search algorithm to positioning GI/M/1/N finite-buffer queue with a single vacation policy. In: Proceedings of the 12th Mexican International Conference on Artificial Intelligence - MICAI 2013, pp. 59–64. IEEE (2013)Google Scholar
  24. 24.
    Woźniak, M., Kempa, W.M., Gabryel, M., Nowicki, R.K.: A finite-buffer queue with single vacation policy - analytical study with evolutionary positioning. International Journal of Applied Mathematics and Computer Science 24(4), 887–900 (2014)MathSciNetGoogle Scholar
  25. 25.
    Woźniak, M., Kempa, W.M., Gabryel, M., Nowicki, R.K., Shao, Z.: On applying evolutionary computation methods to optimization of vacation cycle costs in finite-buffer queue. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 480–491. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  26. 26.
    Woźniak, M., Marszałek, Z.: An idea to apply firefly algorithm in 2D image key-points search. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2014. CCIS, vol. 465, pp. 312–323. Springer, Heidelberg (2014)Google Scholar
  27. 27.
    Woźniak, M., Marszałek, Z., Gabryel, M., Nowicki, R.K.: Modified merge sort algorithm for large scale data sets. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 612–622. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  28. 28.
    Woźniak, M., Połap, D.: Basic concept of cuckoo search algorithm for 2D images processing with some research results: An idea to apply cuckoo search algorithm in 2D images key-points search. In: Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications - SIGMAP 2014, Setubal, Portugal, pp. 164–173. SciTePress - INSTICC (2014)Google Scholar
  29. 29.
    Zhao, W., Huang, D., Guo, L.: Optimizing radial basis probabilistic neural networks using recursive orthogonal least squares algorithms combined with micro-genetic algorithms. In: Proceedings of Neural Networks, vol. 3. IEEE (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian Napoli
    • 1
  • Giuseppe Pappalardo
    • 1
  • Emiliano Tramontana
    • 1
  • Robert K. Nowicki
    • 2
  • Janusz T. Starczewski
    • 2
  • Marcin Woźniak
    • 3
  1. 1.Department of Mathematics and InformaticsUniversity of CataniaCataniaItaly
  2. 2.Institute of Computational IntelligenceCzestochowa University of TechnologyCzestochowaPoland
  3. 3.Institute of MathematicsSilesian University of TechnologyGliwicePoland

Personalised recommendations