Advertisement

CNC Milling Tool Head Imbalance Prediction Using Computational Intelligence Methods

  • Tomasz Żabiński
  • Tomasz Mączka
  • Jacek Kluska
  • Maciej Kusy
  • Piotr Gierlak
  • Robert Hanus
  • Sławomir Prucnal
  • Jarosław Sęp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9119)

Abstract

In this paper, a mechanical imbalance prediction problem for a milling tool heads used in Computer Numerical Control (CNC) machines was studied. Four classes of the head imbalance were examined. The data set included 27334 records with 14 features in the time and frequency domains. The feature selection procedure was applied in order to extract the most significant attributes. Only 3 out of 14 attributes were selected and utilized for the representation of each signal. Seven computational intelligence methods were applied in the prediction task: K–Means clustering algorithm, probabilistic neural network, single decision tree, boosted decision trees, multilayer perceptron, radial basis function neural network and support vector machine. The accuracy, sensitivity and specificity were computed in order to asses the performance of the algorithms.

Keywords

CNC machines Milling tool head imbalance Condition monitoring Computational intelligence methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mączka, T., Żabiński, T.: Platform for Intelligent Manufacturing Systems with elements of knowledge discovery. In: Manufacturing System, pp. 183–204. InTech, Croatia (2012)Google Scholar
  2. 2.
    Żabiński, T., Mączka, T., Kluska, J., Kusy, M., Hajduk, Z., Prucnal, S.: Failures Prediction in the Cold Forging Process Using Machine Learning Methods. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS(LNAI), vol. 8467, pp. 622–633. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    IPC–BECKHOFF New Automation Technology, http://www.beckhoff.com/ipc
  4. 4.
    Żabiński, T., Mączka, T.: Implementation of Human-System Interface for Manufacturing Organizations. In: Hippe, Z.S., Kulikowski, J.L., Mroczek, T. (eds.) Human – Computer Systems Interaction. AISC, Part I, vol. 98, pp. 13–31. Springer, Heidelberg (2012)Google Scholar
  5. 5.
  6. 6.
  7. 7.
  8. 8.
    Shen, C., Wang, G., Wang, S., Liu, G.: The Imbalance Source of Spindle-Tool System and Influence to Machine Vibration Characteristics. In: Second International Conference on Digital Manufacturing & Automation (2011)Google Scholar
  9. 9.
    Smith, G.T.: Cutting tool technology: industrial handbook. Springer-Verlag London Limited (2008)Google Scholar
  10. 10.
    Haas VM-3 CNC machine, http://int.haascnc.com
  11. 11.
    HAIMER Tool Dynamic (2009), www.haimer.com
  12. 12.
    ISO 1940–1:2003 Mechanical vibration - Balance quality requirements for rotors in a constant (rigid) state - Part 1: Specification and verification of balance tolerancesGoogle Scholar
  13. 13.
    Wu, X., Kumar, V., Quinlan, J.R., et al.: Top 10 algorithms in data mining. Knowledge Information Systems 14, 1–37 (2008)CrossRefGoogle Scholar
  14. 14.
    Sherrod, P.H.: DTREG predictive modelling software, http://www.dtreg.com
  15. 15.
    Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. Journal of the Royal Statistical Society - Series C (Applied Statistics) 1, 100–108 (1979)Google Scholar
  16. 16.
    Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)CrossRefGoogle Scholar
  17. 17.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth, Belmont (1984)Google Scholar
  18. 18.
    Friedman, J.H.: Greedy Function Approximation: A Gradient Boosting Machine. IMS Reitz Lecture (1999)Google Scholar
  19. 19.
    Rumelhart, D., McClelland, J.: Parallel Distributed Processing. MIT Press, Cambridge (1986)Google Scholar
  20. 20.
    Chen, S., Wang, X., Harris, C.J.: Experiments with repeating weighted boosting search for optimization in signal processing applications. IEEE Trans. Systems Man Cybernetics Part B Cybernetics 35, 682–693 (2005)CrossRefGoogle Scholar
  21. 21.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tomasz Żabiński
    • 1
  • Tomasz Mączka
    • 1
  • Jacek Kluska
    • 1
  • Maciej Kusy
    • 1
  • Piotr Gierlak
    • 2
  • Robert Hanus
    • 1
  • Sławomir Prucnal
    • 2
  • Jarosław Sęp
    • 2
  1. 1.Faculty of Electrical and Computer EngineeringRzeszów University of TechnologyRzeszówPoland
  2. 2.Faculty of Mechanical Engineering and AeronauticsRzeszów University of TechnologyRzeszówPoland

Personalised recommendations