Advertisement

Cross-Entropy Clustering Approach to One-Class Classification

  • Przemysaw Spurek
  • Mateusz Wójcik
  • Jacek Tabor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9119)

Abstract

Cross-entropy clustering (CEC) is a density model based clustering algorithm. In this paper we apply CEC to the one-class classification, which has several advantages over classical approaches based on Expectation Maximization (EM) and Support Vector Machines (SVM). More precisely, our model allows the use of various types of gaussian models with low computational complexity. We test the designed method on real data coming from the monitoring systems of wind turbines.

Keywords

Covariance matrixa Gaussian filter Mathematical morphology Electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azzalini, A., Bowman, A.: A look at some data on the old faithful geyser. Applied Statistics, 357–365 (1990)Google Scholar
  2. 2.
    Banfield, J.D., Raftery, A.E.: Model-based gaussian and non-gaussian clustering. Biometrics, 803–821 (1993)Google Scholar
  3. 3.
    Barnett, V., Lewis, T.: Outliers in statistical data, vol. 3. Wiley, New York (1994)Google Scholar
  4. 4.
    Barszcz, T., Bielecka, M., Bielecki, A., Wójcik, M.: Wind turbines states classification by a fuzzy-ART neural network with a stereographic projection as a signal normalization. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 225–234. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Barszcz, T., Bielecka, M., Bielecki, A., Wójcik, M.: Wind speed modelling using weierstrass function fitted by a genetic algorithm. Journal of Wind Engineering and Industrial Aerodynamics 109, 68–78 (2012)CrossRefGoogle Scholar
  6. 6.
    Barszcz, T., Bielecki, A., Wójcik, M.: ART-type artificial neural networks applications for classification of operational states in wind turbines. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 11–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bielecki, A., Barszcz, T., Wójcik, M.: Modelling of a chaotic load of wind turbines drivetrain. Mechanical Systems and Signal Processing 54-55, 491–505 (2015)Google Scholar
  8. 8.
    Bielecki, A., Barszcz, T., Wójcik, M., Bielecka, M.: Art-2 artificial neural networks applications for classification of vibration signals and operational states of wind turbines for intelligent monitoring. Diagnostyka 14(4), 21–26 (2013)Google Scholar
  9. 9.
    Bielecki, A., Barszcz, T., Wójcik, M., Bielecka, M.: Hybrid system of ART and RBF neural networks for classification of vibration signals and operational states of wind turbines. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 3–11. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Bishop, C.M.: Novelty detection and neural network validation. In: IEE Proceedings - Vision, Image and Signal Processing, vol. 141, pp. 217–222. IET (1994)Google Scholar
  11. 11.
    Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recognition 28(5), 781–793 (1995)CrossRefGoogle Scholar
  12. 12.
    Davis-Stober, C., Broomell, S., Lorenz, F.: Exploratory data analysis with MATLAB. Psychometrika 72(1), 107–108 (2007)CrossRefGoogle Scholar
  13. 13.
    Guner, O.: History and evolution of the pharmacophore concept in computer-aided drug design. Current Topics in Medicinal Chemistry 2(12), 1321–1332 (2002)CrossRefGoogle Scholar
  14. 14.
    Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artificial Intelligence Review 22(2), 85–126 (2004)CrossRefGoogle Scholar
  15. 15.
    Lukashevich, H., Nowak, S., Dunker, P.: Using one-class svm outliers detection for verification of collaboratively tagged image training sets. In: IEEE International Conference on Multimedia and Expo, ICME 2009, pp. 682–685. IEEE (2009)Google Scholar
  16. 16.
    Markou, M., Singh, S.: Novelty detection: a review–part 1: statistical approaches. Signal Processing 83(12), 2481–2497 (2003)CrossRefMATHGoogle Scholar
  17. 17.
    Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)CrossRefMATHGoogle Scholar
  18. 18.
    Silverman, B.W.: Density estimation for statistics and data analysis, vol. 26. CRC Press (1986)Google Scholar
  19. 19.
    Śmieja, M., Warszycki, D., Tabor, J., Bojarski, A.J.: Asymmetric clustering index in a case study of 5-ht1a receptor ligands. PloS One 9(7), e102069 (2014)Google Scholar
  20. 20.
    Spurek, P., Tabor, J., Zając, E.: Detection of disk-like particles in electron microscopy images. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 411–417. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Stahura, F.L., Bajorath, J.: Virtual screening methods that complement hts. Combinatorial Chemistry & High Throughput Screening 7(4), 259–269 (2004)CrossRefGoogle Scholar
  22. 22.
    Tabor, J., Misztal, K.: Detection of elliptical shapes via cross-entropy clustering. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds.) IbPRIA 2013. LNCS, vol. 7887, pp. 656–663. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Tabor, J., Spurek, P.: Cross-entropy clustering. Pattern Recognition 47(9), 3046–3059 (2014)CrossRefGoogle Scholar
  24. 24.
    Tarassenko, L., Nairac, A., Townsend, N., Buxton, I., Cowley, P.: Novelty detection for the identification of abnormalities. International Journal of Systems Science 31(11), 1427–1439 (2000)CrossRefGoogle Scholar
  25. 25.
    Tax, D.M.J., Duin, R.P.W.: Outlier detection using classifier instability. In: Amin, A., Dori, D., Pudil, P., Freeman, H. (eds.) SPR 1998 and SSPR 1998. LNCS, vol. 1451, pp. 593–601. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  26. 26.
    Tax, D.M., Duin, R.P.: Support vector data description. Machine Learning 54(1), 45–66 (2004)CrossRefMATHGoogle Scholar
  27. 27.
    Waugh, S.: Extending and benchmarking cascade-correlation. Dept of Computer Science, University of Tasmania, Ph. D. Dissertation (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Przemysaw Spurek
    • 1
  • Mateusz Wójcik
    • 2
  • Jacek Tabor
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceJagiellonian UniversityKrakówPoland
  2. 2.Faculty of Electrotechnics, Automation, Computer Science and Biomedical EngineeringAGH University of Science and TechnologyKrakówPoland

Personalised recommendations