Advertisement

Adaptive Active Learning with Ensemble of Learners and Multiclass Problems

  • Wojciech Marian Czarnecki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9119)

Abstract

Active Learning (AL) is an emerging field of machine learning focusing on creating a closed loop of learner (statistical model) and oracle (expert able to label examples) in order to exploit the vast amounts of accessible unlabeled datasets in the most effective way from the classification point of view.

This paper analyzes the problem of multiclass active learning methods and proposes to approach it in a new way through substitution of the original concept of predefined utility function with an ensemble of learners. As opposed to known ensemble methods in AL, where learners vote for a particular example, we use them as a black box mechanisms for which we try to model the current competence value using adaptive training scheme.

We show that modeling this problem as a multi-armed bandit problem and applying even very basic strategies bring significant improvement to the AL process.

Keywords

Active learning Ensemble Classification Multiclass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alimoglu, F., Alpaydin, E.: Methods of combining multiple classifiers based on different representations for pen-based handwritten digit recognition. In: Proceedings of the Fifth Turkish Artificial Intelligence and Artificial Neural Networks Symposium (TAINN 1996). Citeseer (1996)Google Scholar
  2. 2.
    Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research 3, 397–422 (2003)MathSciNetGoogle Scholar
  3. 3.
    Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine Learning 47(2-3), 235–256 (2002)CrossRefGoogle Scholar
  4. 4.
    Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM Journal on Computing 32(1), 48–77 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)MathSciNetGoogle Scholar
  6. 6.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefGoogle Scholar
  7. 7.
    Carpentier, A., Lazaric, A., Ghavamzadeh, M., Munos, R., Auer, P.: Upper-confidence-bound algorithms for active learning in multi-armed bandits. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS, vol. 6925, pp. 189–203. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Clark, C., Storkey, A.: Teaching deep convolutional neural networks to play go. arXiv preprint arXiv:1412.3409 (2014)Google Scholar
  9. 9.
    Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. The Journal of Machine Learning Research 2, 265–292 (2002)Google Scholar
  10. 10.
    Czarnecki, W.M., Podolak, I.: Adaptive active learning as a multi-armed bandit problem. Frontiers in Artificial Intelligence and Applications, pp. 989–990 (2014)Google Scholar
  11. 11.
    Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? The Journal of Machine Learning Research 15(1), 3133–3181 (2014)Google Scholar
  12. 12.
    Gelly, S., Silver, D.: Monte-Carlo tree search and rapid action value estimation in computer Go. Artificial Intelligence 175(11), 1856–1875 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Haussler, D.: Learning conjunctive concepts in structural domains. Machine Learning 4(1), 7–40 (1994)Google Scholar
  14. 14.
    Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)CrossRefGoogle Scholar
  15. 15.
    Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Computer Science Department, University of Toronto, Tech. Rep. (2009)Google Scholar
  16. 16.
    Kuleshov, V., Precup, D.: Algorithms for the multi-armed bandit problem. Journal of Machine Learning Research 1, 397–422 (2000)Google Scholar
  17. 17.
    Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics 6(1), 4–22 (1985)MathSciNetCrossRefGoogle Scholar
  18. 18.
    LeCun, Y., Cortes, C.: Mnist handwritten digit database. AT&T Labs [Online] (2010), http://yann.lecun.com/exdb/mnist
  19. 19.
    Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 661–670. ACM (2010)Google Scholar
  20. 20.
    Ou, G., Murphey, Y.L.: Multi-class pattern classification using neural networks. Pattern Recognition 40(1), 4–18 (2007)CrossRefGoogle Scholar
  21. 21.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011)Google Scholar
  22. 22.
    Podolak, I.T., Roman, A.: Theoretical foundations and experimental results for a hierarchical classifier with overlapping clusters. Computational Intelligence 29(2), 357–388 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Robbins, H.: Some aspects of the sequential design of experiments. In: Lai, T., Siegmund, D. (eds.) Herbert Robbins Selected Papers, pp. 169–177. Springer, New York (1985)CrossRefGoogle Scholar
  24. 24.
    Settles, B.: Active Learning, vol. 6. Morgan & Claypool Publishers (2012)Google Scholar
  25. 25.
    Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT 1992, pp. 287–294. ACM (1992)Google Scholar
  26. 26.
    Sindhwani, V., Melville, P., Lawrence, R.D.: Uncertainty sampling and transductive experimental design for active dual supervision. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 953–960. ACM (2009)Google Scholar
  27. 27.
    Xu, Z., Akella, R., Zhang, Y.: Incorporating diversity and density in active learning for relevance feedback. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECIR 2007. LNCS, vol. 4425, pp. 246–257. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceJagiellonian UniversityCracowPoland

Personalised recommendations