Advertisement

Parallel Coevolutionary Algorithm for Three-Dimensional Bin Packing Problem

  • Wojciech Bożejko
  • Łukasz Kacprzak
  • Mieczysław Wodecki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9119)

Abstract

The work considers the problem of three-dimensional bin packaging (3D-BPP), where a load of maximum volume is put in a single container. To solve the above mentioned problem there was a coevolutionary parallel algorithm used basing on the separate evolution of cooperating subpopulations of possible solutions. Computational experiments were conducted in a neighbourhood of clusters and aimed to examine the impact of parallelization algorithm on the computation time and the quality of the obtained solutions.

Keywords

Rotation Number Packing Problem Hybrid Genetic Algorithm Position List Total Weighted Completion Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bischoff, E.E., Ratcliff, M.S.W.: Issues in the Development of Approaches to Container Loading. Omega, Int. J. Mgmt. Sci. 23(4), 377–390 (1995)CrossRefGoogle Scholar
  2. 2.
    Bortfeld, A., Gehring, H.: A hybryd genetic algorithm for the container loading problem. European Journal of Operational Research 131, 143–161 (2001)CrossRefGoogle Scholar
  3. 3.
    Bożejko, W., Wodecki, M.: Parallel genetic algorithm for minimizing total weighted completion time. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 400–405. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bożejko, W., Wodecki, M.: Parallel Evolutionary Algorithm for the Traveling Salesman Problem. Journal of Numerical Analysis, Industrial and Applied Mathematics 2(3-4), 129–137 (2007)Google Scholar
  5. 5.
    Bożejko, W., Wodecki, M.: Solving Permutational Routing Problems by Population-Based Metaheuristics. Computers & Industrial Engineering 57, 269–276 (2009)CrossRefGoogle Scholar
  6. 6.
    He, Y., Wu, Y., de Souza, R.: A global search framework for practical three-dimensional packing with variable carton orientations. Computers & Operations Research 39(2012), 2395–2414 (2012)CrossRefGoogle Scholar
  7. 7.
    Goncalves, J.F., Resende, M.G.C.: A parallel multi-population biased random-key genetic algorithm for a container loading problem. Computers & Operations Research 39, 179–190 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hopper, E.: Two-dimensional Packing Utilising Evolutionary Algorithms and other Meta- Heuristic Methods, PhD Thesis, University of Wales (2000)Google Scholar
  9. 9.
    Karabulut, K., İnceoğlu, M.M.: A hybrid genetic algorithm for packing in 3D with deepest bottom left with fill method. In: Yakhno, T. (ed.) ADVIS 2004. LNCS, vol. 3261, pp. 441–450. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Kang, K., Moon, I., Wang, H.: A hybrid genetic algorithm with a n packing problem. Applied Mathematics and Computation 219, 1287–1299 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liu, D.S., Tan, K.C., Huang, S.Y., Goh, C.K., Ho, W.K.: On solving multiobjective bin packing problems using evolutionary particle swarm optimization. European Journal of Operational Research 190, 357–382 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Stawowy, A.: Evolutionary based heuristic for bin packing problem. Computers & Industrial Engineering 55, 465–474 (2008)CrossRefGoogle Scholar
  13. 13.
    Wu, Y., Li, W., Goh, M., de Souza, R.: Three-dimensional bin packing problem with variable bin height. European Journal of Operational Research 202, 347–355 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wojciech Bożejko
    • 1
  • Łukasz Kacprzak
    • 1
  • Mieczysław Wodecki
    • 2
  1. 1.Department of Automatics, Mechatronics and Control Systems Faculty of ElectronicsWrocław University of TechnologyWrocławPoland
  2. 2.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations