Determination of Stop-Criterion for Incremental Methods Constructing Camera Sensor Fingerprint

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9023)


This paper aims to find the minimum sample size of the camera reference image set that is needed to build a sensor fingerprint of a high performance. Today’s methods for building sensor fingerprints do rely on having a sufficient number of camera reference images. But, there is no clear answer to the question of how many camera reference images are really needed? In this paper, we will analyze and find out how to determine the minimum needed number of reference images to remove the mentioned uncertainty. We will introduce a quantitative measure (a stop-criterion) stating how many photos should be used to create a high-performance sensor fingerprint. This stop-criterion will directly reflect the confidence level that we would like to achieve. By considering that the number of digital images used to construct the camera sensor fingerprint can have a direct impact on performance of the sensor fingerprint, it is apparent that this, so far underestimated, topic is of major importance.


Image ballistics Source camera verification Pattern noise PRNU Fingerprint performance Laplace distribution 


  1. 1.
    Sencar, H.T., Ramkumar, M., Akansu, A.N.: Data Hiding Fundamentals and Applications: Content Security in Digital Multimedia. Academic Press Inc., Orlando (2004)Google Scholar
  2. 2.
    Arnold, M., Schmucker, M., Wolthusen, S.D.: Techniques and Applications of Digital Watermarking and Content Protection. Artech House Inc., Norwood (2003)Google Scholar
  3. 3.
    Nikolaidis, N., Pitas, I.: Robust image watermarking in the spatial domain. Signal Process. 66(3), 385–403 (1998)CrossRefMATHGoogle Scholar
  4. 4.
    Mahdian, B., Saic, S.: A bibliography on blind methods for identifying image forgery. Image Commun. 25(6), 389–399 (2010)Google Scholar
  5. 5.
    Ng, T.-T., Tsui, M.-P.: Camera response function signature for digital forensics - part i: theory and data selection. In: IEEE Workshop on Information Forensics and Security, December 2009, pp. 156–160 (2009)Google Scholar
  6. 6.
    Lint, Z., Wang, R., Tang, X., Shum, H.-Y.: Detecting doctored images using camera response normality and consistency. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005) - Volume 1, Washington, pp. 1087–1092. IEEE Computer Society (2005)Google Scholar
  7. 7.
    Popescu, A., Farid, H.: Exposing digital forgeries in color filter array interpolated images. IEEE Trans. Signal Process. 53(10), 3948–3959 (2005). [Online]
  8. 8.
    Mahdian, B., Saic, S.: Blind authentication using periodic properties of interpolation. IEEE Trans. Inf. Forensics Secur. 3(3), 529–538 (2008)CrossRefGoogle Scholar
  9. 9.
    Mahdian, B., Saic, S.: Detection of copy-move forgery using a method based on blur moment invariants. Forensic Sci. Int. 17(2–3), 180–189 (2007)CrossRefGoogle Scholar
  10. 10.
    Dirik, A.E., Bayram, S., Sencar, H.T., Memon, N.: New features to identify computer generated images. In: IEEE International Conference on Image Processing, ICIP 2007, vol. 4, pp. 433–436 (2007)Google Scholar
  11. 11.
    Fridrich, J., Pevny, T.: Detection of double-compression for applications in steganography. IEEE Trans. Inf. Sec. Forensics 3(2), 247–258 (2008)CrossRefGoogle Scholar
  12. 12.
    Chen, M., Goljan, M., Lukas, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008)CrossRefGoogle Scholar
  13. 13.
    Lukas, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)CrossRefGoogle Scholar
  14. 14.
    Amerini, I., Caldelli, R., Cappellini, V., Picchioni, F., Piva, A.: Analysis of denoising filters for photo response non uniformity noise extraction in source camera identification. In: Proceedings of the 16th International Conference on Digital Signal Processing, Series DSP 2009, Piscataway, pp. 511–517. IEEE Press (2009). Available: [Online]
  15. 15.
    Alles, E.J., Geradts, Z.J.M.H., Veenman, C.J.: Source camera identification for heavily JPEG compressed low resolution still images. J. Forensic Sci. 54(3), pp. 628–638 (2009). Available: [Online]
  16. 16.
    Yongjian Hu, C.J., Yu, B.: Source camera identification using large components of sensor pattern noise. In: 2nd International Conference on Computer Science and Its Applications, CSA 2009, Jeju Island, Korea (2009)Google Scholar
  17. 17.
    Li, Y., Li, C.-T.: Decomposed photo response non-uniformity for digital forensic analysis. In: Sorell, M. (ed.) e-Forensics 2009. LNICST, vol. 8, pp. 166–172. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  18. 18.
    Hu, Y., Jian, C., Li, C.-T.: Using improved imaging sensor pattern noise for source camera identification. In: ICME, pp. 1481–1486 (2010)Google Scholar
  19. 19.
    Lukas, J., Fridrich, J., Goljan, M.: Detecting digital image forgeries using sensor pattern noise. In: Proceedings of the SPIE, West, p. 2006 (2006)Google Scholar
  20. 20.
    Chen, M., Fridrich, J., Goljan, M., Luk, J.: Source digital camcorder identification using sensor photo-response nonuniformity. In: Proceedings of SPIE Electronic Imaging, Photonics West (2007)Google Scholar
  21. 21.
    Chen, M., Fridrich, J., Goljan, M.: Digital imaging sensor identification (further study). In: Delp, E.J., III; Wong, P. W. (ed.) Security, Steganography, and Watermarking of Multimedia Contents IX. Proceedings of the SPIE, vol. 6505 (2007)Google Scholar
  22. 22.
    Williams, D., Codreanu, V., Yang, P., Liu, B., Dong, F., Yasar, B., Mahdian, B., Chiarini, A., Zhao, X., Roerdink, J.: Evaluation of autoparallelization toolkits for commodity graphics hardware. In: 10th International Conference on Parallel Processing and Applied Mathematics. Springer, Warsaw, Poland (2013)(to appear)Google Scholar
  23. 23.
    Williams, D., Codreanu, V., Roerdink, J.B., Yang, P., Liu, B., Dong, F., Chiarini, A.: Accelerating colonic polyp detection using commodity graphics hardware. In: Proceedings of the International Conference on Computer Medical Applications, Sousse, Tunisia, pp. 1–6 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Babak Mahdian
    • 1
  • Adam Novozámský
    • 1
  • Stanislav Saic
    • 1
  1. 1.Institute of Information Theory and Automation of ASCRPragueCzech Republic

Personalised recommendations