Efficient Reversible Data Hiding Based on Prefix Matching and Directed LSB Embedding

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9023)

Abstract

This paper presents a novel reversible data hiding method, which can recover the original image content without distortion from the stego images after the secret data have been extracted. The method utilizes the original cover image to finally generate two visually similar stego images by embedding additional data. During the data embedding process, the pixels in the first stego image are utilized to embed secret data by applying the proposed prefix matching technique, which exploits each of the gray values to carry one or two bits only with ± 1 operation. Pixels in the second stego image are adaptively modified to carry rest secret data by referring to the first stego image using the directed LSB embedding. For the recipient, the additional data can be extracted from the two stego images with the DH key, and the original cover image can be recovered with the location map. If the cover image has no boundary gray-values, one can always recover the cover image from the two stego images without the aid of any extra information. Experiments show that the proposed method can achieve desirable embedding capacity and maintain a high level of image quality.

Keywords

Reversible data hiding Prefix matching LSB Embedding capacity 

References

  1. 1.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 13(8), 890–896 (2003)CrossRefGoogle Scholar
  2. 2.
    Ni, Z., Shi, Y., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 16(3), 354–362 (2006)CrossRefGoogle Scholar
  3. 3.
    Thodi, D.M., Rodríguez, J.J.: Expansion embedding techniques for reversible watermarking. IEEE Trans. Image Process. 16(3), 721–730 (2007)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Li, X., Yang, B., Zeng, T.: Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans. Image Process. 20(12), 3524–3533 (2011)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Zhang, X., Wang, S.: Efficient steganography embedding by exploiting modification direction. IEEE Commun. Lett. 10(11), 781–783 (2006)CrossRefGoogle Scholar
  6. 6.
    Wang, J., Sun, Y., Xu, H., Chen, K., Kim, H.J., Joo, S.: An improved section-wise exploiting modification direction method. Signal Process. 90(11), 2954–2964 (2010)CrossRefMATHGoogle Scholar
  7. 7.
    Wu, H., Huang, J.: Reversible image watermarking on prediction errors by efficient histogram modification. Signal Process. 92(12), 3000–3009 (2012)CrossRefGoogle Scholar
  8. 8.
    Hong, W., Chen, T.: A novel data hiding embedding method using adaptive pixel pair matching. IEEE Trans. Inf. Forensics Secur. 7(1), 176–184 (2012)CrossRefGoogle Scholar
  9. 9.
    Zhang, X.: Reversible data hiding with optimal value transfer. IEEE Trans. Multimedia 15(2), 316–325 (2013)CrossRefGoogle Scholar
  10. 10.
    Ou, B., Li, X., Zhao, Y., Ni, R., Shi, Y.: Pairwise predication-error expansion for efficient reversible data hiding. IEEE Trans. Image Process. 22(12), 5010–5021 (2013)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Sachnev, V., Kim, H.J., Nam, J., Suresh, S., Shi, Y.: Reversible watermarking algorithm using sorting and prediction. IEEE Trans. Circuits Syst. Video Technol. 19(7), 989–999 (2009)CrossRefGoogle Scholar
  12. 12.
    Hu, Y., Lee, H., Li, J.: DE-based reversible data hiding with improved overflow location map. IEEE Trans. Circuits Syst. Video Technol. 19(2), 250–260 (2009)CrossRefGoogle Scholar
  13. 13.
    Fridrich, J., Goljan, M., Du, R.: Invertible authentication. In: Proceedings of SPIE Photonics West, Security and Watermarking of Multimedia Contests III, vol. 3971, pp. 197–208. San Jose, CA (2001)Google Scholar
  14. 14.
    Fridrich, J., Goljan, M., Du, R.: Lossless data embedding: new paradigm in digital watermarking. EURASIP J. Adv. Signal Process. 2, 185–196 (2002)CrossRefGoogle Scholar
  15. 15.
    Celik, M.U., Sharma, G., Tekalp, A.M.: Lossless watermarking for image authentication: a new framework and an implementation. IEEE Trans. Image Process. 15(4), 1042–1049 (2006)CrossRefGoogle Scholar
  16. 16.
    Alattar, A.M.: Reversible watermarking using the difference expansion of a generalized integer transform. IEEE Trans. Image Process. 13(8), 1147–1156 (2004)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Kamstra, L., Heijmans, H.J.A.M.: Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans. Image Process. 14(12), 2082–2090 (2005)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Hwang, J., Kim, J., Choi, J.,: A reversible watermarking based on histogram shifting. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, pp. 348–361. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Tsai, P., Hu, Y., Yeh, H.: Reversible image hiding scheme using predictive coding and histogram shifting. Sig. Process. 89(6), 1129–1143 (2009)CrossRefMATHGoogle Scholar
  20. 20.
    Lee, S., Yoo, C.D., Kalker, T.: Reversible image watermarking based on integer-to-integer wavelet transform. IEEE Trans. Inf. Forensics Secur. 2(3), 321–330 (2007)CrossRefGoogle Scholar
  21. 21.
    Luo, L., Chen, Z., Chen, M., Zeng, X., Xiong, Z.: Reversible image watermarking using interpolation technique. IEEE Trans. Inf. Forensics Secur. 5(1), 187–193 (2010)CrossRefGoogle Scholar
  22. 22.
    Li, Y., Yeh, C., Chang, C.: Data hiding based on the similarity between neighboring pixels with reversibility. Digit. Signal Proc. 20(4), 1116–1128 (2010)CrossRefGoogle Scholar
  23. 23.
    Qin, C., Chang, C., Hsu, T.: Reversible data hiding scheme based on exploiting modification direction with two steganographic images. Multimedia Tools Appl. (2014). http://link.springer.com/article/10.1007/s11042-014-1894-5
  24. 24.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Information Science and TechnologySouthwest Jiaotong UniversityChengduChina
  2. 2.Computer Science DepartmentNorthern Kentucky UniversityHighland HeightsUSA
  3. 3.University of International RelationsBeijingChina

Personalised recommendations