Visual Cryptography Scheme with Autostereogram

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9023)

Abstract

Visual cryptography scheme (VCS) is an encryption technique that utilizes the human visual system in recovering of the secret image and does not require any cryptographic computation. Autostereogram is a single two dimensional image which becomes a virtual three dimensional image when viewed with proper eye convergence or divergence. Combing the two technologies via human vision, this paper presents a new scheme called (k, n)-VCS with autostereogram. In the scheme, a secret image is encrypted into n images called shares, each of which can function as an autostereogram. By stacking any k shares, the secret image is recovered visually without any equipment, whereas no secret information is obtained with less than k shares.

Keywords

Visual cryptography Visual secret sharing Autostereogram 

References

  1. 1.
    Naor, M., Shamir, A.: Visual Cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Alteniese, G., Blundo, C., De Santis, A., Sinson, D.R.: Extended capabilities for visual cryptography. Theoret. Comput. Sci. 250, 143–161 (2001)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Wang, D.S., Yi, F., Li, X.: On general construction for extended visual cryptography schemes. Pattern Recogn. 42(11), 3071–3082 (2009)CrossRefMATHGoogle Scholar
  4. 4.
    Wheastone, C.: contributions to the physiology of vision, part i: on some remarkable and hitherto unobserved, phenomena of binocular vision. Philos. Trans. R. Soc. Lond. 128, 371–394 (1838)CrossRefGoogle Scholar
  5. 5.
    Wheastone, C.: Contributions to the physiology of vision, Part II: On some remarkable and hitherto unobserved, phenomena of binocular vision (continued). The London, Edinburgh and Dublin Phil. Mag. J. Sci. 4(3), 504–523 (1852)Google Scholar
  6. 6.
    Julesz, B.: Binocular depth perception of computer generated patterns. The Bell Syst. Tech. J. 39, 1125–1162 (1960)CrossRefGoogle Scholar
  7. 7.
    Tyler, C.W., Clarke, M.B.: The autostereogram. SPIE Stereoscopic Displays Appl. 1256, 182–196 (1990)CrossRefGoogle Scholar
  8. 8.
    Thimbleby, H.W., Inglis, S., Witten, I.H.: Displaying 3D images: algorithms for single-image random-dot stereograms. COMPUTER 27(10), 38–48 (1994)CrossRefGoogle Scholar
  9. 9.
    Desmedt, Y.G., Hou, S., Quisquater, J.-J.: Cerebral cryptography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 62–72. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Minh, S.T., Fazekas, K., Gschwindt, A.: The presentation of three-dimensional objects with single image stereogram. IEEE Trans. Instrum. Meas. 51(5), 955–961 (2002)CrossRefGoogle Scholar
  11. 11.
    Papas, M., Houit, T., Nowrouzezahrai, D., Gross, M., Jarosz, Wo.: The magic lens: refractive steganography. ACM SIGGRANPH Asia 2012. (2012) Available at http://www.disneyresearch.com/wp-content/uploads/project_magiclens_paper.pdf
  12. 12.
    Tsai, S.-L., Wen, C.-H.: Towards a design guideline of visual cryptography on stereoscopic displays. In: Kurosu, M. (ed.) HCII/HCI 2013, Part III. LNCS, vol. 8006, pp. 78–84. Springer, Heidelberg (2013)Google Scholar
  13. 13.
    Yamamoto H., Tada S., Suyama S.: Use of DFD (depth-fused 3-D) perception for visual cryptography. Available at http://www.perceptionweb.com/abstract.cgi?id=v110728

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  2. 2.Department of Computer Science and Information EngineeringNational Dong Hwa UniversityShoufengTaiwan

Personalised recommendations