New Developments in Image Tampering Detection

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9023)

Abstract

Statistical feature-based pattern recognition approach has been proved to be useful in digital image forgery detection. In this paper, we first present this approach adopted in Phase 1 of the first IEEE IFS-TC Image Forensics Challenge, in which the task is to classify the tampered images from the original ones, together with the experimental results. Several different kinds of statistical features and their combinations have been tested. Finally, we have chosen to use co-occurrence matrices calculated from the rich model of noise residual images. Furthermore we have selected a subset of the rich model to further enhance the testing accuracy by about 2 % so as to reach a high detection accuracy of 93.7 %. In Phase 2 of the competition, the task is to localize the tampered regions by identifying the tampered pixels. For this purpose, we have introduced the Hamming distance of Local Binary Patterns as similarity measure to tackle the tampering without post-processing on copy-moved regions. The PatchMatch algorithm has been adopted as an efficient search algorithm for block-matching. We have also applied a simple usage of the scale-invariant feature transform (SIFT) when other kinds of processing such as rotation and scaling have been performed on the copy-moved region. The achieved f-score in identifying tampered pixels is 0.267. In summary, some success has been achieved apparently. However, much more efforts are called for to move image tampering detection ahead.

Keywords

Image tampering detection Forgery detection Digital forensics Natural image modeling 

References

  1. 1.
    Farid, H., Lyu, S.: Higher-order wavelet statistics and their application to digital forensics. In: IEEE Workshop on Statistical Analysis in Computer Vision, vol. 8, p. 94, June 2003Google Scholar
  2. 2.
    Fridrich, J., Soukal, D., Lukáš, J.: Detection of copy-move forgery in digital images. In: Proceedings of Digital Forensic Research Workshop (2003)Google Scholar
  3. 3.
    Johnson, K., Farid, H.: Exposing digital forgeries by detecting inconsistencies in lighting. In: Proceedings of the 7th Workshop on Multimedia and Security, pp. 1–10. ACM, August 2005Google Scholar
  4. 4.
    Huang, Y.: Can digital image forgery detection be unevadable? a case study: color filter array interpolation statistical feature recovery. In: Visual Communications and Image Processing 2005, pp. 59602 W–59602 W. International Society for Optics and Photonics, July 2005Google Scholar
  5. 5.
    Ng, T., Chang, F., Sun, Q.: Blind detection of photomontage using higher order statistics. In: Proceedings of the 2004 International Symposium on Circuits and Systems, ISCAS 2004, vol. 5, pp. V–688. IEEE, May 2004Google Scholar
  6. 6.
    Fu, D., Shi, Y.Q., Su, W.: Detection of image splicing based on Hilbert-Huang transform and moments of characteristic functions with wavelet decomposition. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, pp. 177–187. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Chen, W., Shi, Y.Q., Su, W.: Image splicing detection using 2-D phase congruency and statistical moments of characteristic function. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6505, p. 26, February 2007Google Scholar
  8. 8.
    DVMM Research Lab. Columbia Image Splicing Detection Evaluation Dataset (2004). http://www.ee.columbia.edu/ln/dvmm/downloads/AuthSplicedDataSet/AuthSplicedDataSet.htm
  9. 9.
    Ng, T.-T., Chang, F., Sun, Q.: Blind detection of photomontage using higher order statistics. In: Proceedings of the 2004 International Symposium on Circuits and Systems, ISCAS 2004, vol. 5, pp. V–688. IEEE, May 2004Google Scholar
  10. 10.
    Shi, Y.Q., Chen, C., Chen, W.: A natural image model approach to splicing detection. In: Proceedings of the 9th Workshop on Multimedia & Security, pp. 51–62. ACM, September 2007Google Scholar
  11. 11.
    Shi, Y.Q., Chen, C.-H., Xuan, G., Su, W.: Steganalysis versus splicing detection. In: Shi, Y.Q., Kim, H.-J., Katzenbeisser, S. (eds.) IWDW 2007. LNCS, vol. 5041, pp. 158–172. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    He, Z., Lu, W., Sun, W., Huang, J.: Digital image splicing detection based on Markov features in DCT and DWT domain. Pattern Recogn. 45(12), 4292–4299 (2012)CrossRefGoogle Scholar
  13. 13.
  14. 14.
  15. 15.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  16. 16.
    Shi, Y.Q., Sutthiwan, P., Chen, L.: Textural features for steganalysis. In: Kirchner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692, pp. 63–77. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Xu, G., Shi, Y.Q.: Camera model identification using local binary patterns. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 392–397. IEEE, July 2012Google Scholar
  18. 18.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm
  19. 19.
    Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Proc. 19(2), 533–544 (2010)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Sutthiwan, P., Shi, Y.Q., Zhao, H., Ng, T.-T., Su, W.: Markovian rake transform for digital image tampering detection. In: Shi, Y.Q., Emmanuel, S., Kankanhalli, M.S., Chang, S.-F., Radhakrishnan, R., Ma, F., Zhao, L. (eds.) Transactions on Data Hiding and Multimedia Security VI. LNCS, vol. 6730, pp. 1–17. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)CrossRefGoogle Scholar
  22. 22.
    Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)CrossRefGoogle Scholar
  23. 23.
    Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. -TOG 28(3), 24 (2009)Google Scholar
  24. 24.
    Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized patchmatch correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 29–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  26. 26.
    Christlein, V., Riess, C., Jordan, J., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854 (2012)CrossRefGoogle Scholar
  27. 27.
    Fan, Z., de Queiroz, R.L.: Identification of bitmap compression history: JPEG detection and quantizer estimation. IEEE Trans. Image Proc. 12(2), 230–235 (2003)CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Cozzolino, D., Gragnaniello, D., Verdoliva, L.: Image forgery detection through residual-based local descriptors and block-matching. In: IEEE International Conference on Image Processing (ICIP) (2014)Google Scholar
  30. 30.
    Cozzolino, D., Gragnaniello, D., Verdoliva, L.: Image forgery localization through the fusion of camera-based, feature-based and pixel-based techniques. In: IEEE International Conference on Image Processing (ICIP) (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations