Advertisement

International Workshop on Combinatorial Algorithms

IWOCA 2014: Combinatorial Algorithms pp 98-109 | Cite as

3-Coloring Triangle-Free Planar Graphs with a Precolored 9-Cycle

  • Ilkyoo Choi
  • Jan Ekstein
  • Přemysl Holub
  • Bernard LidickýEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8986)

Abstract

Given a triangle-free planar graph G and a cycle C of length 9 in G, we characterize all situations where a 3-coloring of C does not extend to a proper 3-coloring of G. This extends previous results for the length of C up to 8.

References

  1. 1.
    Aksenov, V.A.: The extension of a \(3\)-coloring on planar graphs. Diskret. Analiz (Vyp. 26 Grafy i Testy), 3–19, 84 (1974)Google Scholar
  2. 2.
    Aksenov, V.A., Borodin, O.V., Glebov, A.N.: Continuation of a 3-coloring from a 6-face to a plane graph without 3-cycles. Diskretn. Anal. Issled. Oper. Ser. 1 10(3), 3–11 (2003)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Aksenov, V.A., Borodin, O.V., Glebov, A.N.: Continuation of a 3-coloring from a 7-face onto a plane graph without 3-cycles. Sib. Èlektron. Mat. Izv. 1, 117–128 (2004)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Appel, K., Haken, W.: Every planar map is four colorable. I. Discharging. Illinois J. Math. 21(3), 429–490 (1977)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Appel, K., Haken, W., Koch, J.: Every planar map is four colorable. II. Reducibility. Illinois J. Math. 21(3), 491–567 (1977)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Borodin, O.V.: A new proof of Grünbaum’s \(3\) color theorem. Discrete Math. 169(1–3), 177–183 (1997). http://dx.doi.org/10.1016/0012-365X(95)00984-5 zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Borodin, O.V.: Colorings of plane graphs: A survey. Discrete Math. 33(4), 517–539 (2013). http://dx.doi.org/10.1016/j.disc.2012.11.011 CrossRefGoogle Scholar
  8. 8.
    Borodin, O.V., Dvořák, Z., Kostochka, A.V., Lidický, B., Yancey, M.: Planar 4-critical graphs with four triangles. Eur. J. Combin. 41, 138–151 (2014). http://dx.doi.org/10.1016/j.ejc.2014.03.009 zbMATHCrossRefGoogle Scholar
  9. 9.
    Dailey, D.P.: Uniqueness of colorability and colorability of planar \(4\)-regular graphs are NP-complete. Discrete Math. 30(3), 289–293 (1980). http://dx.doi.org/10.1016/0012-365X(80)90236-8 zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Dvořák, Z., Lidický, B.: 4-critical graphs on surfaces without contractible \((\le 4)\)-cycles. SIAM J. Discrete Math. 28(1), 521–552 (2014). http://dx.doi.org/10.1137/130920952 zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Dvořák, Z., Kawarabayashi, K.i.: Choosability of planar graphs of girth 5. ArXiv e-prints, September 2011Google Scholar
  12. 12.
    Dvořák, Z., Král, D., Thomas, R.: Three-coloring triangle-free graphs on surfaces I. Extending a coloring to a disk with one triangle (2013) (Submitted)Google Scholar
  13. 13.
    Dvořák, Z., Král, D., Thomas, R.: Three-coloring triangle-free graphs on surfaces IV. \(4\)-faces in critical graphs (2014) (Manuscript)Google Scholar
  14. 14.
    Dvořák, Z., Lidický, B.: 3-coloring triangle-free planar graphs with a precolored 8-cycle (2014). http://dx.doi.org/10.1002/jgt.21842 (Accepted to J. Graph Theory)
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., San Francisco (1979)zbMATHGoogle Scholar
  16. 16.
    Gimbel, J., Thomassen, C.: Coloring graphs with fixed genus and girth. Trans. Amer. Math. Soc. 349(11), 4555–4564 (1997). http://dx.doi.org/10.1090/S0002-9947-97-01926-0 zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Grötzsch, H.: Ein Dreifarbenzatz für Dreikreisfreie Netze auf der Kugel. Math.Natur. Reihe 8, 109–120 (1959)Google Scholar
  18. 18.
    Grünbaum, B.: Grötzsch’s theorem on \(3\)-colorings. Michigan Math. J. 10, 303–310 (1963)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Robertson, N., Sanders, D., Seymour, P., Thomas, R.: The four-colour theorem. J. Combin. Theory Ser. B 70(1), 2–44 (1997). http://dx.doi.org/10.1006/jctb.1997.1750 zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Thomassen, C.: The chromatic number of a graph of girth 5 on a fixed surface. J. Combin. Theory Ser. B 87(1), 38–71 (2003). http://dx.doi.org/10.1016/S0095-8956(02)00027-8 (dedicated to Crispin St. J. A. Nash-Williams)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Tutte, W.T.: A contribution to the theory of chromatic polynomials. Canadian J. Math. 6, 80–91 (1954)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Walls, B.H.: Coloring girth restricted graphs on surfaces. ProQuest LLC, Ann Arbor (1999). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9953838 (thesis (Ph.D.)–Georgia Institute of Technology)

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ilkyoo Choi
    • 1
  • Jan Ekstein
    • 2
  • Přemysl Holub
    • 2
  • Bernard Lidický
    • 3
    Email author
  1. 1.Korea Advanced Institute of Science and TechnologyDaejeonSouth Korea
  2. 2.University of West BohemiaPilsenCzech Republic
  3. 3.Iowa State UniversityAmesUSA

Personalised recommendations