International Workshop on Combinatorial Algorithms

IWOCA 2014: Combinatorial Algorithms pp 140-152 | Cite as

A 3-Approximation Algorithm for Guarding Orthogonal Art Galleries with Sliding Cameras

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8986)

Abstract

A sliding camera travelling along a line segment s in a polygon P can see a point p in P if and only if p lies on a line segment contained in P that intersects s at a right angle. The objective of the minimum sliding cameras (MSC) problem is to guard P with the fewest sliding cameras possible, each of which is a horizontal or vertical line segment. In this paper, we give an \(O(n^3)\)-time 3-approximation algorithm for the MSC problem on any simple orthogonal polygon with n vertices. Our algorithm involves establishing a connection between the MSC problem and the problem of guarding simple grids with periscope guards.

References

  1. 1.
    Biedl, T.C., Irfan, M.T., Iwerks, J., Kim, J., Mitchell, J.S.B.: The art gallery theorem for polyominoes. Disc. Comp. Geom. 48(3), 711–720 (2012)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Durocher, S., Filtser, O., Fraser, R., Mehrabi, A.D., Mehrabi, S.: A (7/2)-approximation algorithm for guarding orthogonal art galleries with sliding cameras. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 294–305. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  3. 3.
    Durocher, S., Mehrabi, S.: Guarding orthogonal art galleries using sliding cameras: algorithmic and hardness results. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 314–324. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Eidenbenz, S.: Inapproximability results for guarding polygons without holes. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, p. 427. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  5. 5.
    Eidenbenz, S.: Inapproximability of visibility problems on polygons and terrains. Ph.D. thesis, ETH Zurich (2000)Google Scholar
  6. 6.
    Gewali, L., Ntafos, S.C.: Covering grids and orthogonal polygons with periscope guards. Comput. Geom. 2, 309–334 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons. Disc. App. Math. 158(6), 718–722 (2010)MATHCrossRefGoogle Scholar
  8. 8.
    Hoffmann, F.: On the rectilinear art gallery problem. In: Paterson, M.S. (ed.) Automata, Languages and Programming. LNCS, pp. 717–728. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  9. 9.
    Katz, M.J., Morgenstern, G.: Guarding orthogonal art galleries with sliding cameras. Int. J. Comp. Geom. App. 21(2), 241–250 (2011)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Kosowski, A., Małafiejski, M., Żyliński, P.: An efficient algorithm for mobile guarded guards in simple grids. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 141–150. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  11. 11.
    Kosowski, A., Malafiejski, M., Zylinski, P.: Cooperative mobile guards in grids. Comp. Geom. 37(2), 59–71 (2007)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Krohn, E., Nilsson, B.J.: Approximate guarding of monotone and rectilinear polygons. Algorithmica 66(3), 564–594 (2013)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans. Info. Theory 32(2), 276–282 (1986)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Motwani, R., Raghunathan, A., Saran, H.: Covering orthogonal polygons with star polygons: the perfect graph approach. In: Proceedings of ACM SoCG, pp. 211–223 (1988)Google Scholar
  15. 15.
    O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press Inc, New York (1987)MATHGoogle Scholar
  16. 16.
    Schuchardt, D., Hecker, H.: Two NP-hard art-gallery problems for ortho-polygons. Math. Log. Q. 41(2), 261–267 (1995)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Seddighin, S.: Guarding polygons with sliding cameras. Master’s thesis, Sharif University of Technology (2014)Google Scholar
  18. 18.
    Urrutia, J.: Art gallery and illumination problems. Handb. Comp. Geom. 1(1), 973–1027 (2000). North-HollandGoogle Scholar
  19. 19.
    Worman, C., Keil, J.M.: Polygon decomposition and the orthogonal art gallery problem. Int. J. Comp. Geom. App. 17(2), 105–138 (2007)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of ManitobaWinnipegCanada

Personalised recommendations