A Labelled Semantics for Soft Concurrent Constraint Programming

  • Fabio Gadducci
  • Francesco Santini
  • Luis F. Pino
  • Frank D. Valencia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9037)


We present a labelled semantics for Soft Concurrent Constraint Programming (SCCP), a language where concurrent agents may synchronize on a shared store by either posting or checking the satisfaction of (soft) constraints. SCCP generalizes the classical formalism by parametrising the constraint system over an order-enriched monoid: the monoid operator is not required to be idempotent, thus adding the same information several times may change the store. The novel operational rules are shown to offer a sound and complete co-inductive technique to prove the original equivalence over the unlabelled semantics.


Constraint Satisfaction Problem Soft Constraint Label Transition System Denotational Semantic Compact Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aristizábal, A., Bonchi, F., Palamidessi, C., Pino, L.F., Valencia, F.D.: Deriving labels and bisimilarity for concurrent constraint programming. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 138–152. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Arkhangelskii, A.V., Pontryagin, L.S.: General Topology I. Springer (1990)Google Scholar
  3. 3.
    Baccelli, F., Cohen, G., Olsder, G., Quadrat, J.P.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley (1992)Google Scholar
  4. 4.
    Bistarelli, S., Gabbrielli, M., Meo, M.C., Santini, F.: Timed soft concurrent constraint programs. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 50–66. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based formalisms. In: ECAI 2006. FAIA, vol. 141, pp. 63–67. IOS Press (2006)Google Scholar
  6. 6.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. Journal of ACM 44(2), 201–236 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming. ACM Transactions on Computational Logic 7(3), 563–589 (2006)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bistarelli, S., Santini, F.: A secure non-monotonic soft concurrent constraint language. Fundamamenta Informaticae 134(3-4), 261–285 (2014)MathSciNetGoogle Scholar
  9. 9.
    Bonchi, F., Gadducci, F., Monreale, G.V.: Reactive systems, barbed semantics, and the mobile ambients. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 272–287. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Buscemi, M.G., Montanari, U.: CC-pi: A constraint-based language for specifying service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Dal Lago, U., Martini, S.: Phase semantics and decidability of elementary affine logic. Theoretical Computer Science 318(3), 409–433 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Fargier, H., Lang, J.: Uncertainty in constraint satisfaction problems: a probabilistic approach. In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993. LNCS, vol. 747, pp. 97–104. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  13. 13.
    Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics, vol. 151. Elsevier (2007)Google Scholar
  14. 14.
    Golan, J.: Semirings and Affine Equations over Them: Theory and Applications. Kluwer (2003)Google Scholar
  15. 15.
    Karner, G.: Semiring-based constraint satisfaction and optimization. Semigroup Forum 45(XX), 148–165 (1992)Google Scholar
  16. 16.
    Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  18. 18.
    Monk, J.D.: An introduction to cylindric set algebras. Logic Journal of IGPL 8(4), 451–496 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for CCS. Fundamenta informaticae 16(2), 171–199 (1992)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Pino, L.F., Bonchi, F., Valencia, F.D.: A behavioral congruence for concurrent constraint programming with nondeterministic choice. In: Ciobanu, G., Méry, D. (eds.) ICTAC 2014. LNCS, vol. 8687, pp. 351–368. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  21. 21.
    Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent constraint programming. In: Wise, D.S. (ed.) POPL 1991, pp. 333–352. ACM Press (1991)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Fabio Gadducci
    • 1
  • Francesco Santini
    • 2
  • Luis F. Pino
    • 3
  • Frank D. Valencia
    • 4
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.Istituto di Informatica e Telematica, CNRPisaItaly
  3. 3.Dipartimento di Matematica e InformaticaUniversità di CagliariCagliariItaly
  4. 4.CNRS and LIXÉcole Polytechnique de ParisPalaiseauFrance

Personalised recommendations