Type Reconstruction Algorithms for Deadlock-Free and Lock-Free Linear π-Calculi

  • Luca Padovani
  • Tzu-Chun Chen
  • Andrea Tosatto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9037)


We define complete type reconstruction algorithms for two type systems ensuring deadlock and lock freedom of linear π-calculus processes. Our work automates the verification of deadlock/lock freedom for a non-trivial class of processes that includes interleaved binary sessions and, to great extent, multiparty sessions as well. A Haskell implementation of the algorithms is available.


Type System Integer Variable Simple Type Side Condition Type Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amtoft, T., Nielson, F., Nielson, H.: Type and effect systems: behaviours for concurrency. Imperial College Press (1999)Google Scholar
  2. 2.
    Amtoft, T., Nielson, F., Nielson, H.R.: Type and behaviour reconstruction for higher-order concurrent programs. J. Funct. Program. 7(3), 321–347 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: Inference of global progress properties for dynamically interleaved multiparty sessions. In: De Nicola, R., Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 45–59. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Courcelle, B.: Fundamental properties of infinite trees. Theor. Comp. Sci. 25, 95–169 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: PPDP 2012, pp. 139–150. ACM (2012)Google Scholar
  6. 6.
    Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Henglein, F.: Type inference with polymorphic recursion. ACM Trans. Program. Lang. Syst. 15(2), 253–289 (1993)CrossRefGoogle Scholar
  8. 8.
    Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL 2008, pp. 273–284. ACM (2008)Google Scholar
  9. 9.
    Igarashi, A., Kobayashi, N.: Type reconstruction for linear π-calculus with I/O subtyping. Inf. and Comp. 161(1), 1–44 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Kfoury, A.J., Tiuryn, J., Urzyczyn, P.: Type reconstruction in the presence of polymorphic recursion. ACM Trans. Program. Lang. Syst. 15(2), 290–311 (1993)CrossRefGoogle Scholar
  11. 11.
    Kobayashi, N.: A type system for lock-free processes. Inf. and Comp. 177(2), 122–159 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Informatica 42(4-5), 291–347 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM Trans. Program. Lang. Syst. 21(5), 914–947 (1999)CrossRefGoogle Scholar
  15. 15.
    Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 225–239. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical choreographies. In: POPL 2015, pp. 221–232. ACM (2015)Google Scholar
  17. 17.
    Mezzina, L.G.: How to infer finite session types in a calculus of services and sessions. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 216–231. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Padovani, L.: Deadlock and lock freedom in the linear π-calculus. In: CSL-LICS 2014, pp. 72:1–72:10. ACM (2014),
  19. 19.
    Padovani, L.: Type reconstruction for the linear π-calculus with composite and equi-recursive types. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 88–102. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  1. 1.Università di TorinoTorinoItaly
  2. 2.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations