Advertisement

Investigating Fluid-Flow Semantics of Asynchronous Tuple-Based Process Languages for Collective Adaptive Systems

  • Diego Latella
  • Michele Loreti
  • Mieke Massink
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9037)

Abstract

Recently, there has been growing interest in nature-inspired interaction paradigms for Collective Adaptive Systems, for modelling and implementation of adaptive and context-aware coordination, among which the promising pheromone-based interaction paradigm. System modelling in the context of such a paradigm may be facilitated by the use of languages in which adaptive interaction is decoupled in time and space through asynchronous buffered communication, e.g. asynchronous, repository- or tuple-based languages. In this paper we propose a differential semantics for such languages. In particular, we consider an asynchronous, repository based modelling kernel-language which is a restricted version of LINDA, extended with stochastic information about action duration. We provide stochastic formal semantics for both an agent-based view and a population-based view. We then derive an ordinary differential equation semantics from the latter, which provides a fluid-flow deterministic approximation for the mean behaviour of large populations. We show the application of the language and the ODE analysis on a benchmark example of foraging ants.

Keywords

Asynchronous coordination languages Stochastic process algebras Fluid-flow approximation Continuous time markov chains 

References

  1. 1.
    Antonaki, M., Philippou, A.: A process calculus for spatially-explicit ecological models. In: Ciobanu, G. (ed.) Proceedings 6th Workshop on Membrane Computing and Biologically Inspired Process Calculi, MeCBIC 2012, Newcastle, UK, vol. 100, pp. 14–28. EPTCS (September 8, 2012), http://dx.doi.org/10.4204/EPTCS.100.2
  2. 2.
    Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective systems behaviour: A Tutorial. Performance Evaluation - An International Journal 70, 317–349 (2013), doi:10.1016/j.peva.2013.01.001CrossRefGoogle Scholar
  3. 3.
    Bortolussi, L., Policriti, A.: Dynamical systems and stochastic programming: To ordinary differential equations and back. T. Comp. Sys. Biology 11, 216–267 (2009), doi:10.1007/978-3-642-04186-0_11Google Scholar
  4. 4.
    Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-32940-1_24
  5. 5.
    Carriero, N., Gelernter, D., Mattson, T.G., Sherman, A.H.: The linda® alternative to message-passing systems. Parallel Computing 20(4), 633–655 (1994), http://dx.doi.org/10.1016/0167-81919490032-9
  6. 6.
    Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 222–235. Springer, Heidelberg (2014), http://dx.doi.org/10.1007/978-3-662-44602-7_18 CrossRefGoogle Scholar
  7. 7.
    Ciocchetta, F., Hillston, J.: Bio-pepa: A framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410(33-34), 3065–3084 (2009), http://dx.doi.org/10.1016/j.tcs.2009.02.037 CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    De Nicola, R., et al.: The SCEL Language: Design, Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    De Nicola, R., Latella, D., Loreti, M., Massink, M.: A Uniform Definition of Stochastic Process Calculi. ACM Computing Surveys 46(1), 5:1–5:35 (2013), doi:10.1145/2522968.2522973Google Scholar
  10. 10.
    De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: A kernel language for agents interaction and mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998), http://doi.ieeecomputersociety.org/10.1109/32.685256 CrossRefGoogle Scholar
  11. 11.
    De Nicola, R., Katoen, J., Latella, D., Loreti, M., Massink, M.: Model checking mobile stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007), http://dx.doi.org/10.1016/j.tcs.2007.05.008 CrossRefzbMATHGoogle Scholar
  12. 12.
    Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing exploratory pattern of the argentine ant. Journal of Insects Behaviour 3(2) (1990)Google Scholar
  13. 13.
    Feng, C., Hillston, J.: PALOMA: A Process Algebra for Located Markovian Agents. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 265–280. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in the Argentine Ant. Naturwissenschaften 76, 579–581 (1989)CrossRefGoogle Scholar
  15. 15.
    Guenther, M.C., Bradley, J.T.: Higher moment analysis of a spatial stochastic process algebra. In: Thomas, N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 87–101. Springer, Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-24749-1_8 CrossRefGoogle Scholar
  16. 16.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing. The International Journal of Formal Methods 6(5), 512–535 (1994)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hermanns, H., Herzog, U., Katoen, J.: Process algebra for performance evaluation. Theor. Comput. Sci. 274(1-2), 43–87 (2002), http://dx.doi.org/10.1016/S0304-39750000305-4 CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Latella, D., Loreti, M., Massink, M.: On-the-fly Fluid Model Checking via Discrete Time Population Models. Extended Version. Technical Report TR-QC-08-2014, QUANTICOL (2014)Google Scholar
  19. 19.
    Latella, D., Loreti, M., Massink, M.: On-the-fly fast mean-field model-checking. In: Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 297–314. Springer, Heidelberg (2014), http://dx.doi.org/10.1007/978-3-319-05119-2_17
  20. 20.
    Latella, D., Loreti, M., Massink, M., Senni, V.: Stochastically timed predicate-based communication primitives for autonomic computing. In: Bertrand, N., Bortolussi, L. (eds.) Proceedings Twelfth International Workshop on Quantitative Aspects of Programming Languages and Systems, QAPL 2014, Grenoble, France, April 12-13, vol. 154, pp. 1–16. EPTCS (2014), http://dx.doi.org/10.4204/EPTCS.154.1
  21. 21.
    Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications: The TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4) (2009), http://doi.acm.org/10.1145/1538942.1538945
  22. 22.
    Massink, M., Latella, D.: Fluid analysis of foraging ants. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp. 152–165. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-30829-1_11 CrossRefGoogle Scholar
  23. 23.
    Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE Transactions on Software Engineering. IEEE CS 38(1), 205–219 (2012)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Diego Latella
    • 1
  • Michele Loreti
    • 2
  • Mieke Massink
    • 1
  1. 1.Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNRPisaItaly
  2. 2.Università di Firenze and IMT-LuccaLuccaItaly

Personalised recommendations