Investigating Fluid-Flow Semantics of Asynchronous Tuple-Based Process Languages for Collective Adaptive Systems

  • Diego Latella
  • Michele Loreti
  • Mieke Massink
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9037)


Recently, there has been growing interest in nature-inspired interaction paradigms for Collective Adaptive Systems, for modelling and implementation of adaptive and context-aware coordination, among which the promising pheromone-based interaction paradigm. System modelling in the context of such a paradigm may be facilitated by the use of languages in which adaptive interaction is decoupled in time and space through asynchronous buffered communication, e.g. asynchronous, repository- or tuple-based languages. In this paper we propose a differential semantics for such languages. In particular, we consider an asynchronous, repository based modelling kernel-language which is a restricted version of LINDA, extended with stochastic information about action duration. We provide stochastic formal semantics for both an agent-based view and a population-based view. We then derive an ordinary differential equation semantics from the latter, which provides a fluid-flow deterministic approximation for the mean behaviour of large populations. We show the application of the language and the ODE analysis on a benchmark example of foraging ants.


Asynchronous coordination languages Stochastic process algebras Fluid-flow approximation Continuous time markov chains 


  1. 1.
    Antonaki, M., Philippou, A.: A process calculus for spatially-explicit ecological models. In: Ciobanu, G. (ed.) Proceedings 6th Workshop on Membrane Computing and Biologically Inspired Process Calculi, MeCBIC 2012, Newcastle, UK, vol. 100, pp. 14–28. EPTCS (September 8, 2012),
  2. 2.
    Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective systems behaviour: A Tutorial. Performance Evaluation - An International Journal 70, 317–349 (2013), doi:10.1016/j.peva.2013.01.001CrossRefGoogle Scholar
  3. 3.
    Bortolussi, L., Policriti, A.: Dynamical systems and stochastic programming: To ordinary differential equations and back. T. Comp. Sys. Biology 11, 216–267 (2009), doi:10.1007/978-3-642-04186-0_11Google Scholar
  4. 4.
    Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012),
  5. 5.
    Carriero, N., Gelernter, D., Mattson, T.G., Sherman, A.H.: The linda® alternative to message-passing systems. Parallel Computing 20(4), 633–655 (1994),
  6. 6.
    Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 222–235. Springer, Heidelberg (2014), CrossRefGoogle Scholar
  7. 7.
    Ciocchetta, F., Hillston, J.: Bio-pepa: A framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410(33-34), 3065–3084 (2009), CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    De Nicola, R., et al.: The SCEL Language: Design, Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    De Nicola, R., Latella, D., Loreti, M., Massink, M.: A Uniform Definition of Stochastic Process Calculi. ACM Computing Surveys 46(1), 5:1–5:35 (2013), doi:10.1145/2522968.2522973Google Scholar
  10. 10.
    De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: A kernel language for agents interaction and mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998), CrossRefGoogle Scholar
  11. 11.
    De Nicola, R., Katoen, J., Latella, D., Loreti, M., Massink, M.: Model checking mobile stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007), CrossRefzbMATHGoogle Scholar
  12. 12.
    Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing exploratory pattern of the argentine ant. Journal of Insects Behaviour 3(2) (1990)Google Scholar
  13. 13.
    Feng, C., Hillston, J.: PALOMA: A Process Algebra for Located Markovian Agents. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 265–280. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in the Argentine Ant. Naturwissenschaften 76, 579–581 (1989)CrossRefGoogle Scholar
  15. 15.
    Guenther, M.C., Bradley, J.T.: Higher moment analysis of a spatial stochastic process algebra. In: Thomas, N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 87–101. Springer, Heidelberg (2011), CrossRefGoogle Scholar
  16. 16.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing. The International Journal of Formal Methods 6(5), 512–535 (1994)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hermanns, H., Herzog, U., Katoen, J.: Process algebra for performance evaluation. Theor. Comput. Sci. 274(1-2), 43–87 (2002), CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Latella, D., Loreti, M., Massink, M.: On-the-fly Fluid Model Checking via Discrete Time Population Models. Extended Version. Technical Report TR-QC-08-2014, QUANTICOL (2014)Google Scholar
  19. 19.
    Latella, D., Loreti, M., Massink, M.: On-the-fly fast mean-field model-checking. In: Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 297–314. Springer, Heidelberg (2014),
  20. 20.
    Latella, D., Loreti, M., Massink, M., Senni, V.: Stochastically timed predicate-based communication primitives for autonomic computing. In: Bertrand, N., Bortolussi, L. (eds.) Proceedings Twelfth International Workshop on Quantitative Aspects of Programming Languages and Systems, QAPL 2014, Grenoble, France, April 12-13, vol. 154, pp. 1–16. EPTCS (2014),
  21. 21.
    Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications: The TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4) (2009),
  22. 22.
    Massink, M., Latella, D.: Fluid analysis of foraging ants. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp. 152–165. Springer, Heidelberg (2012), CrossRefGoogle Scholar
  23. 23.
    Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE Transactions on Software Engineering. IEEE CS 38(1), 205–219 (2012)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Diego Latella
    • 1
  • Michele Loreti
    • 2
  • Mieke Massink
    • 1
  1. 1.Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNRPisaItaly
  2. 2.Università di Firenze and IMT-LuccaLuccaItaly

Personalised recommendations