Parallelisation and Application of AD3 as a Method for Solving Large Scale Combinatorial Auctions

  • Francisco Cruz-MenciaEmail author
  • Jesus Cerquides
  • Antonio Espinosa
  • Juan Carlos Moure
  • Juan A. Rodriguez-Aguilar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9037)


Auctions, and combinatorial auctions (CAs), have been successfully employed to solve coordination problems in a wide range of application domains. However, the scale of CAs that can be optimally solved is small because of the complexity of the winner determination problem (WDP), namely of finding the bids that maximise the auctioneer’s revenue. A way of approximating the solution of a WDP is to solve its linear programming relaxation. The recently proposed Alternate Direction Dual Decomposition algorithm (AD 3) has been shown to efficiently solve large-scale LP relaxations. Hence, in this paper we show how to encode the WDP so that it can be approximated by means of AD 3. Moreover, we present PAR-AD 3, the first parallel implementation of AD 3. PAR-AD 3 shows to be up to 12.4 times faster than CPLEX in a single-thread execution, and up to 23 times faster than parallel CPLEX in an 8-core architecture. Therefore PAR-AD 3 becomes the algorithm of choice to solve large-scale WDP LP relaxations for hard instances. Furthermore, PAR-AD 3 has potential when considering large-scale coordination problems that must be solved as optimisation problems.


Combinatorial auctions Large-scale coordination Large-scale optimisation Linear programming 


  1. 1.
  2. 2.
    Aguiar, P., Xing, E.P., Figueiredo, M., Smith, N.A., Martins, A.: An augmented lagrangian approach to constrained map inference. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 169–176 (2011)Google Scholar
  3. 3.
    Andersson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial auction winner determination. In: Proceedings of the Fourth International Conference on MultiAgent Systems, pp. 39–46. IEEE (2000)Google Scholar
  4. 4.
    Ball, M.O.: Heuristics based on mathematical programming. Surveys in Operations Research and Management Science 16(1), 21–38 (2011)CrossRefGoogle Scholar
  5. 5.
    Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization, 1st edn. Athena Scientific (1997)Google Scholar
  6. 6.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning 3(1), 1–122 (2011)CrossRefGoogle Scholar
  7. 7.
    Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial auctions. MIT Press (2006)Google Scholar
  8. 8.
    De Vries, S., Vohra, R.V.: Combinatorial auctions: A survey. INFORMS Journal on Computing 15(3), 284–309 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the l 1-ball for learning in high dimensions. In: Proceedings of the 25th International Conference on Machine Learning, pp. 272–279. ACM (2008)Google Scholar
  10. 10.
    Eckstein, J., Bertsekas, D.P.: On the douglas?rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 55(1-3), 293–318 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational complexity of combinatorial auctions: Optimal and approximate approaches. In: International Joint Conferences on Artificial Intelligence (IJCAI), pp. 548–553 (1999)Google Scholar
  12. 12.
    Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers & Mathematics with Applications 2(1), 17–40 (1976)CrossRefzbMATHGoogle Scholar
  13. 13.
    Globerson, A., Jaakkola, T.S.: Fixing max-product: Convergent message passing algorithms for map lp-relaxations. In: Advances in Neural Information Processing Systems, pp. 553–560 (2008)Google Scholar
  14. 14.
    Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 9(R2), 41–76 (1975)Google Scholar
  15. 15.
    Gu, Z., Rothberg, E., Bixby, R.: Gurobi 4.0.2. software (December 2010)Google Scholar
  16. 16.
    Hazan, T., Shashua, A.: Norm-product belief propagation: Primal-dual message-passing for approximate inference. IEEE Transactions on Information Theory 56(12), 6294–6316 (2010)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1568–1583 (2006)CrossRefGoogle Scholar
  18. 18.
    Komodakis, N., Paragios, N., Tziritas, G.: Mrf optimization via dual decomposition: Message-passing revisited. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)Google Scholar
  19. 19.
    Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models: Methodology and a case study on combinatorial auctions. Journal of the ACM (JACM) 56(4), 22 (2009)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for combinatorial auction algorithms. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 66–76. ACM (2000)Google Scholar
  21. 21.
    Martins, A.F.T.: The Geometry of Constrained Structured Prediction: Applications to Inference and Learning of Natural Language Syntax. PhD thesis, Columbia University (2012)Google Scholar
  22. 22.
    Martins, A.F.T., Figueiredo, M.A.T., Aguiar, P.M.Q., Smith, N.A., Xing, E.P.: Ad3: Alternating directions dual decomposition for map inference in graphical models. Journal of Machine Learning Research 46 (2014) (to appear)Google Scholar
  23. 23.
    Miksik, O., Vineet, V., Perez, P., Torr, P.H.S.: Distributed non-convex admm-inference in large-scale random fields. In: British Machine Vision Conference, BMVC (2014)Google Scholar
  24. 24.
    Parsons, S., Rodriguez-Aguilar, J.A., Klein, M.: Auctions and bidding: A guide for computer scientists. ACM Comput. Surv. 43(2), 10:1–10:59 (2011)Google Scholar
  25. 25.
    Ramchurn, S.D., Mezzetti, C., Giovannucci, A., Rodriguez-Aguilar, J.A., Dash, R.K., Jennings, N.R.: Trust-based mechanisms for robust and efficient task allocation in the presence of execution uncertainty. Journal of Artificial Intelligence Research 35(1), 119 (2009)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Ramchurn, S.D., Rogers, A., Macarthur, K., Farinelli, A., Vytelingum, P., Vetsikas, I., Jennings, N.R.: Agent-based coordination technologies in disaster management. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems: Demo Papers, pp. 1651–1652 (2008)Google Scholar
  27. 27.
    Roy, A., Mihailovic, I., Zwaenepoel, W.: X-stream: edge-centric graph processing using streaming partitions. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, pp. 472–488. ACM (2013)Google Scholar
  28. 28.
    Rush, A.M., Sontag, D., Collins, M., Jaakkola, T.: On dual decomposition and linear programming relaxations for natural language processing. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 1–11. Association for Computational Linguistics (2010)Google Scholar
  29. 29.
    Sandholm, T., Suri, S., Gilpin, A., Levine, D.: Cabob: A fast optimal algorithm for combinatorial auctions. In: International Joint Conference on Artificial Intelligence, vol. 17, pp. 1102–1108 (2001)Google Scholar
  30. 30.
    Santos Jr., E.: On the generation of alternative explanations with implications for belief revision. In: Proceedings of the Seventh conference on Uncertainty in Artificial Intelligence, pp. 339–347. Morgan Kaufmann Publishers Inc. (1991)Google Scholar
  31. 31.
    Sheffi, Y.: Combinatorial auctions in the procurement of transportation services. Interfaces 34(4), 245–252 (2004)CrossRefGoogle Scholar
  32. 32.
    Sierra, C., Lopez de Mantaras, R., Busquets, D.: Multiagent bidding mechanisms for robot qualitative navigation. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986, pp. 198–212. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  33. 33.
    Smith, D., Eisner, J.: Dependency parsing by belief propagation. In: Proceedings of the Conference on Empirical Conference on Empirical Methods in Natural Language Processing, pp. 145–156 (October 2008)Google Scholar
  34. 34.
    Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T.S., Weiss, Y.: Tightening lp relaxations for map using message passing. arXiv preprint arXiv:1206.3288 (2012)Google Scholar
  35. 35.
    Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: Tree-reweighted belief propagation algorithms and approximate ml estimation by pseudo-moment matching. In: Workshop on Artificial Intelligence and Statistics, vol. 21, p. 97. Society for Artificial Intelligence and Statistics (2003)Google Scholar
  36. 36.
    Yanover, C., Meltzer, T., Weiss, Y.: Linear programming relaxations and belief propagation – an empirical study. J. Mach. Learn. Res. 7, 1887–1907 (2006)zbMATHMathSciNetGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Francisco Cruz-Mencia
    • 1
    • 2
    Email author
  • Jesus Cerquides
    • 2
  • Antonio Espinosa
    • 1
  • Juan Carlos Moure
    • 1
  • Juan A. Rodriguez-Aguilar
    • 2
  1. 1.IIIA-CSICBarcelonaSpain
  2. 2.CAOS-UABBarcelonaSpain

Personalised recommendations