Biodegradation of Organophosphate and Pyrethroid Pesticides by Microorganims

  • Natália Alvarenga
  • Willian Garcia Birolli
  • André Luiz Meleiro PortoEmail author
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 7)


Major methods for the biodegradation of organophosphate and pyrethroid pesticides are reviewed in this chapter. Although these methods are very promising, it is not easy to avoid fully the release of metabolites into the environment. Therefore, serious problems of soil, water and even foods contamination still exist. Despite the great benefits of pesticides to agricultural productivity, they also cause serious problems of contamination and increasingly need studies, especially in the search of compounds that are less harmful to the environment. Knowledge of the biodegradation route of pesticides and the development of new techniques that allow the improvement of these degradation pathways are essential, therefore, this chapter presents studies about the biodegradation of organophosphate and pyrethroid pesticides by biological processes, focussing on the development of new enzymatic methods, especially those using bacteria and fungi. Other methods of biological degradation of organophosphate and pyrethroid pesticides are also described.


Pyrethroid pesticide Organophosphate pesticide Acetylcholinesterase Microbial degradation Phosphotriesterases Fungi 



NAS and WGB thanks, respectively, Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their scholarships. ALM Porto is grateful to CNPq and FAPESP for financial support.


  1. Anderson RS, Durst HD, Landis WG (1988) Organofluorophosphate-hydrolyzing activity in an estuarine clam, Rangia cuneata. Comp Biochem Physiol C Toxicol Pharmacol 91:575–578CrossRefGoogle Scholar
  2. Appel KE, Michalak H, Gericke S (1994) Health risks from pyrethroids? – data on their neurotoxicity, toxicokinetics and human health disorder. Wissenschaft und Umwelt 2:95–108Google Scholar
  3. Ayadin R, Koprucu K, Dorucu M, Koprucu SS, Pala M (2005) Acute toxicity of synthetic pyrethroids cypermethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Aquacult Int 13:451–458CrossRefGoogle Scholar
  4. Barrot R (1996) Critical comment on the symptomatology of “pyrethroid poisoning”. Arbeitsmedizin Sozialmedizin Umweltmedizin 31:196–203Google Scholar
  5. Benning MM, Hong SB, Raushel FM, Holden HM (2000) The binding of substrate analogs to phosphotriesterase. J Biol Chem 275:30556–30560CrossRefGoogle Scholar
  6. Berlin JR, Akera T, Brody TM, Matsumura F (1984) The ionotropic effects of a synthetic pyrethroid decamethrin on isolated guinea pig atrial muscle. Eur J Pharmacol 98:313–322CrossRefGoogle Scholar
  7. Bigley AN, Raushel FM (2013) Catalytic mechanism for phosphotriesterases. Biochem Biophys Acta 1834:443–453Google Scholar
  8. Bleecker JL (2008) Organophosphate and carbamate poisoning. In: Engel AG (ed) Handbook of clinical neurology, vol 91, 3rd edn. Elsevier BV, Amsterdam, pp 401–432Google Scholar
  9. Bradberry SM, Cage SA, Proudfoot AT, Allister Vale J (2005) Poisoning due to pyrethroids. Toxicol Rev 24:93–106CrossRefGoogle Scholar
  10. Casida JE, Quistad GB (1998) Golden age of insecticide research: past, present or future? Annu Rev Entomol 43:1–16CrossRefGoogle Scholar
  11. Chen W, Mulchandani A (1998) The use of live biocatalysts for pesticide detoxification. TIBETECH 16:71–76CrossRefGoogle Scholar
  12. Chen S, Lai K, Li Y, Hu M, Zhang Y, Zeng Y (2011a) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol 90:1471–1483CrossRefGoogle Scholar
  13. Chen S, Yang L, Hu M, Liu J (2011b) Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol 90:755–767CrossRefGoogle Scholar
  14. Chen S, Luo J, Hu M, Lai K, Geng P, Xiao Y (2011c) Isolation, identification, degradation characteristics and pathway of a purethroid-degrading bacterial strain, Huanjing Kexue Xuebao/. Acta Scientiae Circumstantiae 31:1616–1626Google Scholar
  15. Chen S, Hu Q, Hu M, Luo J, Weng Q, Lai K (2011d) Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresour Technol 102:8110–8116CrossRefGoogle Scholar
  16. Chen SH, Li YN, Lai KP (2011e) Degradation kinetics of three pyrethroid insecticides by strain DG-S-01 in flowering Chinese cabbage and soil. Chin J Pestic Sci 13:381–386Google Scholar
  17. Chen S, Geng P, Xiao Y, Hu M (2012) Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Appl Microbiol Biotechnol 94:505–515CrossRefGoogle Scholar
  18. Domingos JB, Longhinotti E, Machado VG, Faruk N (2003) A química dos ésteres de fosfato. Química Nova 26:745–753CrossRefGoogle Scholar
  19. Dov F, Imperatriz-Fonseca VL, Neto FL (2005) Biomes of Brazil – an illustrated natural history: biomas do Brasil – Uma Historia Natural Ilustrada. Pensoft, SofiaGoogle Scholar
  20. Durrington PN, Mackness B, Mackness MI (2001) Paraoxonase and atherosclerosis. Arterioscler Thromb Vasc Biol 21:473–480CrossRefGoogle Scholar
  21. Duysen EG, Cashman JR, Schopfer LM, Nachon F, Masson P, Lockridge O (2012) Differential sensitivity of plasma carboxylesterase-null mice to parathion, chlorpyrifos and chlorpyrifos oxon, but not to diazinon, dichlorvos, diisopropylfluorophosphate, cresyl saligenin phosphate, cyclosarin thiocholine, tabun, thiocholine, and carbofuran. Chem Biol Interact 195:189–198CrossRefGoogle Scholar
  22. Elbert A, Nauen R, McCaffery A (2007) IRAC, Insecticide resistance and mode of action classification of insecticides. In: Krämer W, Schirmer U (eds) Modern crop protection compounds. WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim, pp 753–771CrossRefGoogle Scholar
  23. El-Gohary M, Awara WM, Nassar S, Hawas S (1999) Deltamethrin induced testicular apoptosis in rats: the protective effect of nitric oxide synthase inhibitor. Toxicology 132:1–8CrossRefGoogle Scholar
  24. Environmental Protection Agency – EPA (2011) Pesticides industry – sales and usage – 2006 and 2007 market estimatesGoogle Scholar
  25. Faria ABC (2009) Revisão sobre alguns grupos de inseticidas utilizados no manejo integrado de pragas florestais. Ambiência 5:345–358Google Scholar
  26. Farnsworth CA, Teese MG, Yuan G, Li Y, Scott C, Zhang X, Wu Y et al (2010) Esterase-based metabolic resistance to insecticides in heliothine and spodopteran pests. J Pestic Sci 35:275–289CrossRefGoogle Scholar
  27. Feyereisen R (2005) Insect cytochrome P450. In: Gilbert LI, Latrou K, Gill SS (eds) Comprehensive molecular insect science. Elsevier BV, Oxford, pp 1–77CrossRefGoogle Scholar
  28. Flores AV, Ribeiro JN, Neves AA, Queiroz ELR (2004) Organoclorados: um problema de saúde pública. Ambiente & Sociedade 7:125–143CrossRefGoogle Scholar
  29. Galli A, Souza D, Garbellini GS, Coutinho CFB, Mazo LH, Avaca LA, Machado SAS (2006) Utilização de técnicas eletroanalíticas na determinação de pesticidas em alimentos. Química Nova 29:105–112CrossRefGoogle Scholar
  30. Gani D, Wilkie J (1995) Stereochemical, mechanistic, and structural features of enzyme-catalysed phosphate monoester hydrolyses. Chem Soc Rev 24:55–63CrossRefGoogle Scholar
  31. Guo P, Wang BZ, Hang BJ, Li L, Ali SW, He J, Li SP (2009) Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. Int Biodeterior Biodegrad 63:1107–1112CrossRefGoogle Scholar
  32. Halden RU, Peters EG, Halden BG, Dwyer DF (2000) Transformation of mono- and dichlorinated phenoxybenzoates by phenoxybenzoate-dioxygenase in Pseudomonas pseudoalcaligenes POB310 and a modified diarylether-metabolizing bacterium. Biotechnol Bioeng 69:107–112CrossRefGoogle Scholar
  33. Hartley CJ, Newcom RD, Russell RJ, Yong CG, Stevens JR, Yeates DK, La Salle J, Oakeshott JG (2006) Amplification of DNA from preserved specimens shows blowflies were preadapted for the rapid evolution of insecticide resistance. Proc Natl Acad Sci U S A 103:8757–8762CrossRefGoogle Scholar
  34. Hasan HAH (1999) Fungal utilization of organophosphate pesticides and their degradation by Aspergillus flavus and A. sydowii in soil. Folia Microbiol 44:77–84CrossRefGoogle Scholar
  35. Hong Q, Zhang Z, Hong Y, Li S (2007) A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int Biodeter Biodegr 59:55–61CrossRefGoogle Scholar
  36. Housset P, Dickman R (2009) A promise fulfilled – pyrethroid development and the benefits for agriculture and human health. Bayer CropSci J 62:135–144Google Scholar
  37. Izaguirre MF, Lajmanovich RC, Peltzer PM, Soler AP, Casco VH (2000) Cypermethrin-induced apoptosis in the telencephalon of Physalaemus biligonigerus tadpoles (Anura: Leptodactylidae). Bull Environ Contam Toxicol 65:501–507CrossRefGoogle Scholar
  38. Jauregui J, Valderrama B, Albores A, Vazquez-duhalt R (2003) Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation 14:397–406CrossRefGoogle Scholar
  39. Kim YH, Ahn JY, Moon SH, Lee J (2005) Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp. pisi cutinase. Chemosphere 60:1349–1355CrossRefGoogle Scholar
  40. Kocaman AY, Topaktaş M (2009) The in vitro genotoxic effects of a commercial formulation of alpha-cypermethrin in human peripheral blood lymphocytes. Environ Mol Mutagen 50:27–36CrossRefGoogle Scholar
  41. Krzysko-Lupicka T, Strof W, Kubs K, Skorupa M, Wieczorek P, Lejczak B, Kafarrski P (1997) The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl Microbiol Biotechnol 48:549–552CrossRefGoogle Scholar
  42. Kumar A, Sharma B, Pandey RS (2008) Cypermethrin and k-cyhalothrin induced alterations in nucleic acids and protein contents in a freshwater fish, Channa punctatus. Fish Physiol Biochem 34:331–338CrossRefGoogle Scholar
  43. Kumar SV, Fareedullah M, Sudhakar Y, Venkateswarlu B, Kumar ES (2010) Current review on organophosphorus poisoning. Arch Appl Sci Res 4:199–215Google Scholar
  44. Kunz SE, Kemp DH (1994) Insecticides and acaricides: resistance and environmental impact. Rev Sci Technol off Int Epiz 13:1249–1286Google Scholar
  45. Lee WJ, Blair A, Hoppin JA, Lubin JH, Rusiecki JA, Sandler DP, Dosemeci M, Alavanja MCR (2007) Cancer incidence among pesticide applicators exposed to chlorpyrifos in the agricultural health study. J Natl Cancer I 96:1781–1789CrossRefGoogle Scholar
  46. Lei Y, Mulchandani P, Chen W, Wang J, Mulchandani A (2004) Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophosphorous nerve agents with p-nitrophenyl substituent. Biotechnol Bioeng 85:706–713CrossRefGoogle Scholar
  47. Li XC, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253CrossRefGoogle Scholar
  48. Liang WQ, Wang ZY, Li H, Wu PC, Hu JM, Luo N, Cao LX, Liu YH (2005) Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. J Agric Food Chem 53:7415–7420CrossRefGoogle Scholar
  49. Lin QS, Chen SH, Hu MY, Ul Haq MR, Yang L, Li H (2011) Biodegradation of cypermethrin by a newly isolated actinomycetes HU-s-01 from wastewater sludge. Int J Environ Sci Technol 8:45–56CrossRefGoogle Scholar
  50. Liu W, Gan J, Lee S, Werner I (2005) Isomer selectivity in aquatic toxicity and biodegradation of bifenthrin and permethrin. Environ Toxicol Chem 24:1861–1866CrossRefGoogle Scholar
  51. Liu SL, Yao K, Jia DY, Lai W, Zhao N, Yuan HY (2011) Study on pre-treatment method for HPLC analysis of cypermethrin in Aspergillus oryzae degradation system. Sichuan Daxue Xuebao/J Sichuan Univ 43:179–183Google Scholar
  52. Lla HB, Topaktas M, Rencuzogullari E, Kayraldiz A, Donbak L, Daglioglu YK (2008) Genotoxic potential of cyfluthrin. Mutat Res 656:49–54CrossRefGoogle Scholar
  53. Londres F (2011) Agrotóxicos no Brasil – Um Guia para Ação em Defesa da Vida. Editora AS-PTA, Rio de Janeiro. ISBN 978-85-87116-15-4Google Scholar
  54. Mackness B, Durrington PN, Mackness MI (1998) Human serum paraoxonase. Genom Pharmacol 31:329–336CrossRefGoogle Scholar
  55. Malghani S, Chatterjee N, Yu HX, Luo Z (2009) Isolation and identification of profenofos degrading bacteria. Braz J Microbiol 40:893–900CrossRefGoogle Scholar
  56. Maloney SE, Maule A, Smith ARW (1988) Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl Environ Microbiol 54:2874–2876Google Scholar
  57. Maloney SE, Maule A, Smith ARW (1993) Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus. Appl Environ Microbiol 59:2007–2013Google Scholar
  58. Mansee AH, Chen W, Mulchandani A (2005) Detoxification of the organophosphate nerve agent coumaphos using organophosphorus hydrolase immobilized on cellulose materials. J Ind Microbiol Biotechnol 32:554–560CrossRefGoogle Scholar
  59. Mattozzi MP, Tehara SK, Hong T, Keasling JD (2006) Mineralization of paraoxon and its use as a sole C and P source by a rationally designed catabolic pathway in Pseudomonas putida. Appl Environ Microbiol 72:6699–6706CrossRefGoogle Scholar
  60. Mikata K, Isobe N, Kaneko H (2012) Biotransformation and enzymatic reactions of synthetic pyrethroids in mammals. Top Curr Chem 314:113–136CrossRefGoogle Scholar
  61. Mudhoo A, Mohee R (2012) Bioremediation and sustainability – research and applications. Wiley-Scrivenerand, Hoboken. ISBN 978-1-1180-6284-5Google Scholar
  62. Mukherjee I, Mittal A (2007) Dissipation of β-cyfluthrin by two fungi Aspergillus nidulans var. dentatus and Sepedonium maheswarium. Toxicol Environ Chem 89:319–326CrossRefGoogle Scholar
  63. Mulbry W, Ahrens E, Karns J (1998) Use of a field-scale biofilter for the degradation of the organophosphate insecticide coumaphos in cattle dip wastes. Pestic Sci 52:268–274CrossRefGoogle Scholar
  64. Muller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, Steven A, Yawson AE et al (2008) Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. Plos Genet 4:e1000286CrossRefGoogle Scholar
  65. Oakeshott JG, Johnson RM, Berenbaum MR, Ranson H, Cristino AS, Claudianos C (2010) Metabolic enzymes associated with xenobiotic and chemosensory responses in Nasonia vitripennis. Insect Mol Biol 19:147–163CrossRefGoogle Scholar
  66. Paingankar M, Jain M, Deobagkar D (2005) Biodegradation of allethrin, a pyrethroid insecticide, by an Acidomonas sp. Biotechnol Lett 27:1909–1913CrossRefGoogle Scholar
  67. Pena MF, Amaral EH, Sperling EV, Cruz I (2003) Método para determinação de resíduos de clorpirifós em alface por cromatografia a líquido de alta eficiência. Pesticidas: Revista de Ecotoxicologia e Meio Ambiente 13:37–44Google Scholar
  68. Primo-Parmo SLP, Sorenson RC, Teiber J, La Du BN (1996) The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics 33:498–507CrossRefGoogle Scholar
  69. Ramadevi C, Nath MM, Guru Prasad MG (2012) Mycodegradation of malathion by a soil fungal isolate, Aspergillus niger. Int J Basic Appl Chem Sci 2:108–115Google Scholar
  70. Richins RD, Kaneva I, Mulchandani A, Chen W (1997) Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 15:984–987CrossRefGoogle Scholar
  71. Romyen S, Hawker D, Karnchanasest B (2007) Distribution of organophosphate insecticides in a Thai biomass-water system. J Environ Sci Health 42:869–875CrossRefGoogle Scholar
  72. Ross MK, Borazjani A, Edwards CC, Potter PM (2006) Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases. Biochem Pharmacol 71:657–669CrossRefGoogle Scholar
  73. Rusiecki JA, Patel R, Koutros S, Beane-Freeman L, Landgren O, Bonner MR et al (2009) Cancer incidence among pesticide applicators exposed to permethrin in the Agricultural Health Study. Environ Health Perspect 117:581–586CrossRefGoogle Scholar
  74. Russel RJ, Scott C, Jackson CJ, Pandey R, Pandey G, Taylor MC (2011) The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects. Evol Appl 4:225–248CrossRefGoogle Scholar
  75. Saikia N, Gopal M (2004) Biodegradation of β-cyfluthrin by fungi. J Agric Food Chem 52:1220–1223CrossRefGoogle Scholar
  76. Saikia N, Das SK, Patel BKC, Niwas R, Singh A, Gopal M (2005) Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain S1. Biodegradation 16:581–589CrossRefGoogle Scholar
  77. Salibian A, Marazzo L (1995) Studies on the effect of deltamethrin on sodium net transport through the in vivo amphibian skin. Biomed Environ Sci 8:165–168Google Scholar
  78. Santos VMR, Donnici CL, Dacosta JBN, Caixeiro JMR (2007) Compostos organofosforados pentavalentes: histórico, métodos sintéticos de preparação e aplicações como inseticidas e agentes antitumorais. Química Nova 30:159–170CrossRefGoogle Scholar
  79. Satoh T, Hosokawa M (2006) Structure, function and regulation of carboxylesterases. Chem Biol Interact 162:195–211CrossRefGoogle Scholar
  80. Saxena KK, Seth N (2002) Toxic effects of cypermethrin on certain hematological aspects of fresh water fish, Channa punctatus. Bull Environ Contam Toxicol 69:364–369CrossRefGoogle Scholar
  81. Schofield DA, Dinovo AA (2010) Generation of a mutagenized organophosphorus hydrolase for the biodegradation of the organophosphate pesticides malathion and demeton-s. J Appl Microbiol 109:548–557Google Scholar
  82. Scollon EJ, Starr JM, Godin SJ, DeVito MJ, Hughers MF (2009) In vitro metabolism of pyrethroid pesticides by rats and human hepatic microsomes and cytochrome p450 isoforms. Drug Metab Dispos 37:221–228CrossRefGoogle Scholar
  83. Scott C, Pandey G, Hartley CJ, Jackson JC, Cheesman MJ, Taylor MC, Pandey R, Khurana JL, Teese M, Coppin CW, Weir KM, Jain RK, Lal R, Russell RJ, Oakeshott JG (2008) The enzymatic basis for pesticide bioremediation. Ind J Microbiol 48:65–79CrossRefGoogle Scholar
  84. Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59CrossRefGoogle Scholar
  85. Sogorb MA, Vilanova E (2002) Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 128:215–228CrossRefGoogle Scholar
  86. Stoytcheva M (2011) In: Stoytcheva M (ed) Pesticides in the modern world – pesticides use and management. InTech, Rijeka. ISBN 978-953-307-459-7Google Scholar
  87. Tallur PN, Megadi VB, Ninnekar HZ (2008) Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19:77–82CrossRefGoogle Scholar
  88. Tang J, Liu L, Hu S, Chen Y, Chen J (2009) Improved degradation of organophosphate dichlorvos by Trichoderma atroviride transformants generated by restriction enzyme-mediated integration (REMI). Bioresour Technol 100:480–483CrossRefGoogle Scholar
  89. Wang BZ, Ma Y, Zhou W, Zheng J, Zhu J, He J, Li S (2011) Biodegradation of synthetic pyrethroids by Ochrobactrum tritici strain pyd-1. World J Microbiol Biotechnol 27:2315–2324CrossRefGoogle Scholar
  90. Wattanaphon HT, Kerdsin A, Thammacharoen C, Sangvanich P, Vangnai AS (2008) A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization. J Appl Microbiol 105:416–423CrossRefGoogle Scholar
  91. Wheelock GD, Scott JG (1992) The role of cytochrome- P450IPR in deltamethrin metabolism by pyrethroid-resistant and susceptible strains of house-flies. Pestic Biochem Physiol 43:67–77CrossRefGoogle Scholar
  92. Wheelock GD, Shan G, Ottea J (2005) Overview of carboxylesterases and their role in the metabolism of insecticides. J Pestic Sci 30:75–83CrossRefGoogle Scholar
  93. Wirtz K, Bala S, Amann A, Elbert A (2009) A promise extended – future role of pyrethroids in agriculture. Bayer CropSci J 62:145–158Google Scholar
  94. Wolansky MJ, Harril JA (2008) Neurobehavioral toxicology of pyrethroid insecticides in adult animals: a critical review. Neurotoxicol Teratol 30:55–78CrossRefGoogle Scholar
  95. Wu PC, Liu YH, Wang ZY, Zhang XY, Li H, Liang WQ, Luo N, Hu JM, Lu JQ, Luan TG, Cao LX (2006) Molecular cloning, purification, and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112. J Agric Food Chem 54:836–842CrossRefGoogle Scholar
  96. Yamada T, Uwagawa S, Okuno Y, Cohen SM, Kaneko H (2009) Case study: an evaluation of the human relevance of the synthetic pyrethroid metofluthrin-induced liver tumors in rats based on mode of action. Toxicol Sci 108:59–68CrossRefGoogle Scholar
  97. Yang C, Cai N, Dong M, Jiang H, Li J, Qiao C, Mulchandani A, Chen W (2008) Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates. Biotechnol Bioeng 99:30–37CrossRefGoogle Scholar
  98. Yang D, Wang X, Chen Y, Deng R, Yan B (2009) Pyrethroid insecticides: isoform-dependent hydrolysis, induction of cytochrome P450 3A4 and evidence on the involvement of the pregnane X receptor. Toxicol Appl Pharmacol 237:49–58CrossRefGoogle Scholar
  99. You J, Weston DP, Lydy MJA (2004) sonication extraction method for the analysis of pyrethroid, organophosphate, and organochlorine pesticides from sediment by gas chromatography with electron-capture detection. Arch Environ Contam Toxicol 47:141–147Google Scholar
  100. Yu FB, Shan SD, Luo LP, Guan LB, Qin H (2013) Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil. J Environ Sci Health B 48:198–207CrossRefGoogle Scholar
  101. Zhai Y, Li K, Song J, Shi Y, Yan Y (2012) Molecular cloning, purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1. J Hazard Mater 221–222:206–212CrossRefGoogle Scholar
  102. Zhang ML, Scott JG (1996) Cytochrome b(5) is essential for cytochrome P450 6D1-mediated cypermethrin resistance in LPR house flies. Pestic Biochem Physiol 55:150–156CrossRefGoogle Scholar
  103. Zhang H, Yang C, Li C, Li L, Zhao Q, Qiao C (2008) Functional assembly of a microbial consortium with autofluorescent and mineralizing activity for the biodegradation of organophosphates. J Agric Food Chem 56:7897–7902CrossRefGoogle Scholar
  104. Zheng YZ, Lan WS, Qiao CL, Mulchandani A, Chen W (2007) Decontamination of vegetables sprayed with organophosphate pesticides by organophosphorus hydrolase and carboxylesterase (B1). Appl Biochem Biotechnol 136:233–241CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Natália Alvarenga
    • 1
  • Willian Garcia Birolli
    • 1
  • André Luiz Meleiro Porto
    • 1
    Email author
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations