Advertisement

Classification of Hand Movements from Non-invasive Brain Signals Using Lattice Neural Networks with Dendritic Processing

  • Leonardo Ojeda
  • Roberto Vega
  • Luis Eduardo Falcon
  • Gildardo Sanchez-Ante
  • Humberto Sossa
  • Javier M. AntelisEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9116)

Abstract

EEG-based BCIs rely on classification methods to recognize the brain patterns that encode user’s intention. However, decoding accuracies have reached a plateau and therefore novel classification techniques should be evaluated. This paper proposes the use of Lattice Neural Networks with Dendritic Processing (LNND) for the classification of hand movements from electroencephalographic (EEG) signals. The performance of this technique was evaluated and compared with classical classifiers using EEG signals recorded form participants performing motor tasks. The result showed that LNND provides: (i) the higher decoding accuracies in experiments using one electrode (\(DA=80\,\%\) and \(DA=80\,\%\) for classification of motor execution and motor imagery, respectively); (ii) distributions of decoding accuracies significantly different and higher than the chance level (\(p<0.05\), Wilcoxon signed-rank test) in experiments using one, two, four and six electrodes. These results shows that LNND could be a powerful technique for the recognition of motor tasks in BCIs.

Keywords

Lattice Neural Network Brain-Computer Interface  Electroencephalogram Motor imagery 

Notes

Acknowledgments

The authors thank Tecnológico de Monterrey, Campus Guadalajara, for their support under the Research Chair in Information Technologies and Electronics, as well as IPN-CIC under project SIP 20151187, and CONACYT under project 155014 for the economical support to carry out this research.

References

  1. 1.
    Wolpaw, J., Birbaumer, N., McFarland, D., Pfurtscheller, G., Vaughan, T.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  2. 2.
    Becedas, J.: Brain-machine interfaces: Basis and advances. IEEE Trans. Syst. Man Cybern. B Cybern. Part C: Appl. Rev. 42(6), 825–835 (2012)CrossRefGoogle Scholar
  3. 3.
    Graimann, B., Allison, B.Z., Pfurtscheller, G.: Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Lotte, F., Congedo, M., Lcuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for eeg-based brain-computer interfaces. J. Neural Eng. 4(2), R1–R13 (2007)CrossRefGoogle Scholar
  5. 5.
    Sossa, H., Guevara, E.: Efficient training for dendrite morphological neural networks. Neurocomput. 131, 132–142 (2014)CrossRefGoogle Scholar
  6. 6.
    Vega, R., Guevara, E., Falcon, L.E., Sanchez-Ante, G., Sossa, H.: Blood vessel segmentation in retinal images using lattice neural networks. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part I. LNCS, vol. 8265, pp. 532–544. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York (2001) zbMATHGoogle Scholar
  8. 8.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)Google Scholar
  9. 9.
    Ritter, G., Urcid, G.: Lattice algebra approach to single-neuron computation. IEEE Trans. Neural Networks 14(2), 282–295 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gori, M., Scarselli, F.: Are multilayer perceptrons adequate for pattern recognition and verification? IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1121–1132 (1998)CrossRefGoogle Scholar
  11. 11.
    Ritter, G., Schmalz, M.: Learning in lattice neural networks that employ dendritic computing. In: IEEE International Conference on Fuzzy Systems 2006, pp. 7–13 (2006)Google Scholar
  12. 12.
    Ritter, G., Iancu, L.: Single layer feedforward neural network based on lattice algebra. In: Proceedings of the International Joint Conference on Neural Networks, vol. 4, pp. 2887–2892 , July 2003Google Scholar
  13. 13.
    Schalk, G., Mcfarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)CrossRefGoogle Scholar
  14. 14.
    Steel, R.G., Torrie, J.H.: Principles and Procedures of Statistics with Special Reference to the Biological Sciences. McGraw Hill, New York (1960) zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Leonardo Ojeda
    • 1
  • Roberto Vega
    • 2
  • Luis Eduardo Falcon
    • 1
  • Gildardo Sanchez-Ante
    • 1
  • Humberto Sossa
    • 3
  • Javier M. Antelis
    • 1
    • 4
    Email author
  1. 1.Tecnológico de Monterrey Campus GuadalajaraZapopanMexico
  2. 2.Department of Computing ScienceUniversity of AlbertaEdmontonCanada
  3. 3.Instituto Politécnico Nacional-CICMéxicoMexico
  4. 4.Centro de Investigación en Mecatrónica Automotriz (CIMA)Tecnológico de Monterrey Campus TolucaTolucaMexico

Personalised recommendations