Modified Binary Inertial Particle Swarm Optimization for Gene Selection in DNA Microarray Data

  • Carlos Garibay
  • Gildardo Sanchez-AnteEmail author
  • Luis E. Falcon-Morales
  • Humberto Sossa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9116)


DNA microarrays are being used to characterize the genetic expression of several illnesses, such as cancer. There has been interest in developing automated methods to classify the data generated by those microarrays. The problem is complex due to the availability of just a few samples to train the classifiers, and the fact that each sample may contain several thousands of features. One possibility is to select a reduced set of features (genes). In this work we propose a wrapper method that is a modified version of the Inertial Geometric Particle Swarm Optimization.We name it MIGPSO. We compare MIGPSO with other approaches. The results are promising. MIGPSO obtained an increase in accuracy of about 4 %. The number of genes selected is also competitive.


DNA microarray PSO Feature selection Wrapper method 



The authors thank Tecnológico de Monterrey, Campus Guadalajara, as well as IPN-CIC under project SIP 20151187, and CONACYT under project 155014 for the economical support to carry out this research.


  1. 1.
    Koller, D., Sahami, M.: Toward optimal feature selection. Technical report, Stanford InfoLab, Stanford University (1996)Google Scholar
  2. 2.
    Kohavi, R., John, G.H.: Wrappers for feature subset selection. J. Artif. Intel. 97(1), 273–324 (1997)zbMATHCrossRefGoogle Scholar
  3. 3.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)zbMATHGoogle Scholar
  4. 4.
    Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. J. Bioinf. 23(19), 2507–2517 (2007)CrossRefGoogle Scholar
  5. 5.
    Xing, E.P., Jordan, M.I., Karp, R.M., et al.: Feature selection for high-dimensional genomic microarray data. In: ICML, vol. 1, pp. 601–608. Citeseer (2001)Google Scholar
  6. 6.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. J. Mach. Learn. 446(1–3), 389–422 (2002)CrossRefGoogle Scholar
  7. 7.
    Ruiz, R., Riquelme, J.C., Aguilar-Ruiz, J.S.: Incremental wrapper-based gene selection from microarray data for cancer classification. J. Patt. Recog. 39(12), 2383–2392 (2006)CrossRefGoogle Scholar
  8. 8.
    Chiang, Y.M., Chiang, H.M., Lin, S.Y.: The application of ant colony optimization for gene selection in microarray-based cancer classification. Int. Conf. Mach. Learn. Cybern. 7, 4001–4006 (2008)Google Scholar
  9. 9.
    Yu, H., Gu, G., Liu, H., Shen, J., Zhao, J.: A modified ant colony optimization algorithm for tumor marker gene selection. Genom. Proteom. Bioinf. 7(4), 200–208 (2009)CrossRefGoogle Scholar
  10. 10.
    Chuang, L.Y., Chang, H.W., Tu, C.J., Yang, C.H.: Improved binary PSO for feature selection using gene expression data. Comp. Biol. Chem. 32(1), 29–38 (2008)zbMATHCrossRefGoogle Scholar
  11. 11.
    Saraswathi, S., Sundaram, S., Sundararajan, N., Zimmermann, M., Nilsen-Hamilton, M.: ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented. T. Comput. Biol. Bioinf. 8(2), 452–463 (2011)Google Scholar
  12. 12.
    Vieira, S.M., Mendonça, L.F., Farinha, G.J., Sousa, J.M.: Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients. J. Appl. Soft Comput. 13(8), 3494–3504 (2013)CrossRefGoogle Scholar
  13. 13.
    El Akadi, A., Amine, A., El Ouardighi, A., Aboutajdine, D.: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper. Know. Inf. Syst. 26(3), 487–500 (2011)CrossRefGoogle Scholar
  14. 14.
    Chen, K.H., Wang, K.J., Tsai, M.L., Wang, K.M., Adrian, A.M., Cheng, W.C., Yang, T.S., Teng, N.C., Tan, K.P., Chang, K.S.: Gene selection for cancer identification: a decision tree model empowered by particle swarm optimization algorithm. BMC Bioinf. 15(1), 49 (2014)CrossRefGoogle Scholar
  15. 15.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE Int. Conf. Neural Networks. 4, 1942–1948 (1995)Google Scholar
  16. 16.
    García-Gonzalo, E., Fernández-Martínez, J.: A brief historical review of particle swarm optimization (PSO). J. Bioinf. Intel. Cont. 1(1), 3–16 (2012)CrossRefGoogle Scholar
  17. 17.
    Yang, X.S.: Engineering Optimization: An Introduction With Metaheuristic Applications. Wiley, New York (2010)CrossRefGoogle Scholar
  18. 18.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar
  19. 19.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE Conference Evolutionary Computation., pp. 69–73 (1998)Google Scholar
  20. 20.
    Moraglio, A., Di Chio, C., Togelius, J., Poli, R.: Geometric particle swarm optimization. J. Artif. Evol. Appl. 11, 247–250 (2008)Google Scholar
  21. 21.
    Moraglio, A., Togelius, J.: Inertial geometric particle swarm optimization. In: IEEE Conference on Evolutionary Computation, pp. 1973–1980 (2009)Google Scholar
  22. 22.
    Alba, E., García-Nieto, J., Jourdan, L., Talbi, E.G.: Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. In: IEEE Conference on Evolutionary Computation, pp. 284–290 (2007)Google Scholar
  23. 23.
    Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. 96(12), 6745–6750 (1999)CrossRefGoogle Scholar
  24. 24.
    Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer cell 1(2), 203–209 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Carlos Garibay
    • 1
  • Gildardo Sanchez-Ante
    • 1
    Email author
  • Luis E. Falcon-Morales
    • 1
  • Humberto Sossa
    • 2
  1. 1.Data Visualization and Pattern Recognition LabTecnológico de Monterrey, Campus GuadalajaraZapopanMexico
  2. 2.Instituto Politécnico Nacional-Centro de Investigación En ComputaciónMéxico, D.F.México

Personalised recommendations