Direct Formal Verification of Liveness Properties in Continuous and Hybrid Dynamical Systems

  • Andrew Sogokon
  • Paul B. Jackson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9109)


This paper is concerned with proof methods for the temporal property of eventuality (a type of liveness) in systems of polynomial ordinary differential equations (ODEs) evolving under constraints. This problem is of a more general interest to hybrid system verification, where reasoning about temporal properties in the continuous fragment is often a bottleneck. Much of the difficulty in handling continuous systems stems from the fact that closed-form solutions to non-linear ODEs are rarely available. We present a general method for proving eventuality properties that works with the differential equations directly, without the need to compute their solutions. Our method is intuitively simple, yet much less conservative than previously reported approaches, making it highly amenable to use as a rule of inference in a formal proof calculus for hybrid systems.


Hybrid System Target Region Continuous System Hybrid Automaton Liveness Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21(4), 181–185 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Computing 4(4), 361–369 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bhatia, N.P., Szegő, G.P.: Stability Theory of Dynamical Systems. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, vol. 161. Springer (1970)Google Scholar
  4. 4.
    Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Blanchini, F., Miani, S.: Set-Theoretic Methods in Control. Systems & Control: Foundations & Applications. Birkhäuser (2008)Google Scholar
  6. 6.
    Collins, G.E.: Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)Google Scholar
  7. 7.
    Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5(1/2), 29–35 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Demyanov, V.F.: The solution of minimaximin problems. USSR Computational Mathematics and Mathematical Physics 10(3), 44–55 (1970)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Dolzmann, A., Sturm, T., Weispfenning, V.: Real Quantifier Elimination in Practice. In: Algorithmic Algebra and Number Theory, pp. 221–247 (1998)Google Scholar
  10. 10.
    Ekici, E.: On the directional differentiability properties of the max-min function. Boletín de la Asociación Matemática Venezolana X(1), 35–42 (2003)Google Scholar
  11. 11.
    Fehnker, A., Krogh, B.H.: Hybrid system verification is not a sinecure. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 263–277. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 279–294. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Henzinger, T.A.: The theory of hybrid automata. In: Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, pp. 278–292 (1996)Google Scholar
  14. 14.
    Immler, F.: Formally verified computation of enclosures of solutions of ordinary differential equations. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 113–127. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Immler, F.: Verified reachability analysis of continuous systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 37–51. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  16. 16.
    Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transactions on Software Engineering 3(2), 125–143 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. (eds.) EMSOFT, pp. 97–106. ACM (2011)Google Scholar
  19. 19.
    Lyapunov, A.M.: The general problem of stability of motion. Kharkov Mathematical Society, Kharkov (1892)Google Scholar
  20. 20.
    Nagumo, M.: Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen. In: Proceedings of the Physico-Mathematical Society of Japan, vol. 24, pp. 551–559 (May 1942)Google Scholar
  21. 21.
    Navarro-López, E.M., Carter, R.: Hybrid automata: an insight into the discrete abstraction of discontinuous systems. International Journal of Systems Science 42(11), 1883–1898 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of ODEs. SIAM Journal on Numerical Analysis 45(1), 236–262 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Transactions on Programming Languages and Systems (TOPLAS) 4(3), 455–495 (1982)CrossRefzbMATHGoogle Scholar
  24. 24.
    Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Engineering and applied science, control and dynamical systems, California Institute of Technology (May 2000)Google Scholar
  25. 25.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning 41(2), 143–189 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–189. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle. Journal de Mathématiques Pures et Appliquées 7, 3, 4, 375–422, 251–296, 167–224 (1881, 1882, 1885)Google Scholar
  29. 29.
    Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Prajna, S., Rantzer, A.: Primal–dual tests for safety and reachability. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 542–556. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions. SIAM J. Control Optim. 48(7), 4377–4394 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Richardson, D.: Some undecidable problems involving elementary functions of a real variable. Journal of Symbolic Logic 33(4), 514–520 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Stiver, J.A., Koutsoukos, X.D., Antsaklis, P.J.: An invariant-based approach to the design of hybrid control systems. International Journal of Robust and Nonlinear Control 11(5), 453–478 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Taly, A., Tiwari, A.: Deductive verification of continuous dynamical systems. In: Kannan, R., Kumar, K.N. (eds.) FSTTCS. LIPIcs, vol. 4, pp. 383–394. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2009)Google Scholar
  35. 35.
    Tarski, A.: A decision method for elementary algebra and geometry. Bulletin of the American Mathematical Society 59 (1951)Google Scholar
  36. 36.
    Wang, T.C., Lall, S., West, M.: Polynomial level-set method for polynomial system reachable set estimation. IEEE Transactions on Automatic Control 58(10), 2508–2521 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.LFCS, School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations