Advertisement

Axiomatization of Typed First-Order Logic

  • Peter H. Schmitt
  • Mattias Ulbrich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9109)

Abstract

This paper contributes to the theory of typed first-order logic. We present a sound and complete axiomatization for a basic typed logic lifting restrictions imposed by previous results. As a second contribution, this paper provides complete axiomatizations for the type predicates instance T , exactInstance T , and functions cast T indispensable for reasoning about object-oriented programming languages.

Keywords

Atomic Formula Predicate Symbol Congruence Relation Basic Signature Sequent Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism in smt solvers. In: Proceedings of the Joint Workshops of the 6th International Workshop on Satisfiability Modulo Theories and 1st International Workshop on Bit-Precise Reasoning, SMT 2008/BPR 2008, pp. 1–5. ACM, New York (2008)CrossRefGoogle Scholar
  3. 3.
    Bobot, F., Paskevich, A.: Expressing Polymorphic Types in a Many-Sorted Language. In: Tinelli and Sofronie-Stokkermans [9], pp. 87–102Google Scholar
  4. 4.
    Esparza, J., Majumdar, R. (eds.): TACAS 2010. LNCS, vol. 6015. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  5. 5.
    Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving. Wiley (1987)Google Scholar
  6. 6.
    Giese, M.A.: A calculus for type predicates and type coercion. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 123–137. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language: Design and logical encoding. In: Esparza and Majumdar [4], pp. 312–327Google Scholar
  8. 8.
    Schmidt, A.: Über deduktive Theorien mit mehreren Sorten von Grunddingen. Math. Annalen 115, 485–506 (1938)CrossRefGoogle Scholar
  9. 9.
    Tinelli, C., Sofronie-Stokkermans, V. (eds.): FroCoS 2011. LNCS, vol. 6989. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  10. 10.
    Walther, C.: A Many-Sorted Calculus Based on Resolution and Paramodulation. Pitman / Morgan Kaufmann (1987)Google Scholar
  11. 11.
    Weidenbach, C.: First-order tableaux with sorts. Logic Journal of the IGPL 3(6), 887–906 (1995)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of InformaticsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations