Probabilistic Bisimulation for Realistic Schedulers

  • Christian Eisentraut
  • Jens Chr. Godskesen
  • Holger Hermanns
  • Lei Song
  • Lijun Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9109)


Weak distribution bisimilarity is an equivalence notion on probabilistic automata, originally proposed for Markov automata. It has gained some popularity as the coarsest behavioral equivalence enjoying valuable properties like preservation of trace distribution equivalence and compositionality. This holds in the classical context of arbitrary schedulers, but it has been argued that this class of schedulers is unrealistically powerful. This paper studies a strictly coarser notion of bisimilarity, which still enjoys these properties in the context of realistic subclasses of schedulers: Trace distribution equivalence is implied for partial information schedulers, and compositionality is preserved by distributed schedulers. The intersection of the two scheduler classes thus spans a coarser and still reasonable compositional theory of behavioral semantics.


Late Distribution Multiagent System Transition Relation Internal Transition Parallel Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time semantics for Markov chains. Inf. Comput. 200(2), 149–214 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bernardo, M., De Nicola, R., Loreti, M.: Relating strong behavioral equivalences for processes with nondeterminism and probabilities. Theor. Comput. Sci. 546, 63–92 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentralized control of Markov decision processes. Math. Oper. Res. 27(4), 819–840 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Trans. Dependable Sec. Comput. 7(2), 128–143 (2010)CrossRefGoogle Scholar
  5. 5.
    Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim, L., Jančar, P., Křetínský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–385. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Chehaibar, G., Garavel, H., Mounier, L., Tawbi, N., Zulian, F.: Specification and Verification of the PowerScale\(^{\scriptsize{\mbox{TM}}}\) bus arbitration protocol: An industrial experiment with lotos. In: FORTE, pp. 435–450 (1996)Google Scholar
  7. 7.
    De Alfaro, L.: The verification of probabilistic systems under memoryless partial-information policies is hard. Technical report, DTIC Document (1999)Google Scholar
  8. 8.
    Deng, Y., Hennessy, M.: On the semantics of Markov automata. Information and Computation 222, 139–168 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C.: Testing finitary probabilistic processes. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 274–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Weak bisimulation is sound and complete for pCTL*. Inf. Comput. 208(2), 203–219 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Doyen, L., Henzinger, T.A., Raskin, J.: Equivalence of labeled Markov chains. Int. J. Found. Comput. Sci. 19(3), 549–563 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Eisentraut, C., Godskesen, J.C., Hermanns, H., Song, L., Zhang, L.: Late Weak Bisimulation for Markov Automata. CoRR, abs/1202.4116 (2014),
  13. 13.
    Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 90–109. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Eisentraut, C., Hermanns, H., Krämer, J., Turrini, A., Zhang, L.: Deciding bisimilarities on distributions. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 72–88. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a stochastic world. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 21–39. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: LICS, pp. 342–351 (2010)Google Scholar
  17. 17.
    Feng, Y., Zhang, L.: When equivalence and bisimulation join forces in probabilistic automata. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 247–262. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: neither decidable nor approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and analysis of markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 168–184. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  20. 20.
    Halmos, P.R.: Measure theory, vol. 1950. Springer (1974)Google Scholar
  21. 21.
    He, F., Gao, X., Wang, B., Zhang, L.: Leveraging weighted automata in compositional reasoning about concurrent probabilistic systems. In: POPL, pp. 503–514. ACM (2015)Google Scholar
  22. 22.
    Hennessy, M.: Exploring probabilistic bisimulations, part I. Formal Asp. Comput. 24(4-6), 749–768 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Hermanns, H.: Interactive Markov chains: and the quest for quantified quality. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Hermanns, H., Krčál, J., Křetínský, J.: Probabilistic bisimulation: Naturally on distributions. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 249–265. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  25. 25.
    Honda, K., Tokoro, M.: On asynchronous communication semantics. In: Zatarain-Cabada, R., Wang, J. (eds.) ECOOP-WS 1991. LNCS, vol. 612, pp. 21–51. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  26. 26.
    Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 23–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  28. 28.
    Rudin, W.: Real and complex analysis. Tata McGraw-Hill Education (2006)Google Scholar
  29. 29.
    Schuster, J., Siegle, M.: Markov automata: Deciding weak bisimulation by means of non-navely vanishing states. Information and Computation 237, 151–173 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Segala, R.: A compositional trace-based semantics for probabilistic automata. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 234–248. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  31. 31.
    Segala, R.: Modeling and Verification of Randomized Distributed Realtime Systems. PhD thesis. MIT (1995)Google Scholar
  32. 32.
    Song, L., Feng, Y., Zhang, L.: Decentralized bisimulation for multiagent systems. In: AAMAS, pp. 209–217. IFAAMAS (2015)Google Scholar
  33. 33.
    Timmer, M., van de Pol, J., Stoelinga, M.I.A.: Confluence reduction for markov automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 243–257. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian Eisentraut
    • 1
  • Jens Chr. Godskesen
    • 2
  • Holger Hermanns
    • 1
  • Lei Song
    • 3
  • Lijun Zhang
    • 4
  1. 1.Saarland UniversitySaarbrückenGermany
  2. 2.IT University of CopenhagenKøbenhavn SDenmark
  3. 3.University of Technology SydneySydneyAustralia
  4. 4.State Key Laboratory of Computer ScienceInstitute of Software, CASBeijingChina

Personalised recommendations