Resource Analysis: From Sequential to Concurrent and Distributed Programs

  • Elvira Albert
  • Puri Arenas
  • Jesús Correas
  • Samir Genaim
  • Miguel Gómez-Zamalloa
  • Enrique Martin-Martin
  • Germán Puebla
  • Guillermo Román-Díez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9109)


Resource analysis aims at automatically inferring upper/lower bounds on the worst/best-case cost of executing programs. Ideally, a resource analyzer should be parametric on the cost model, i.e., the type of cost that the user wants infer (e.g., number of steps, amount of memory allocated, amount of data transmitted, etc.). The inferred upper bounds have important applications in the fields of program optimization, verification and certification. In this talk, we will review the basic techniques used in resource analysis of sequential programs and the new extensions needed to handle concurrent and distributed systems.


Resource Consumption Cost Model Concurrent Program Cost Center Resource Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, E., Arenas, P., Correas, J., Genaim, S., Gómez-Zamalloa, M., Puebla, G., Román-Díez, G.: Object-Sensitive Cost Analysis for Concurrent Objects. Software Testing, Verification and Reliability (2015),
  2. 2.
    Albert, E., Arenas, P., Genaim, S., Puebla, G.: Field-Sensitive Value Analysis by Field-Insensitive Analysis. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 370–386. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in Static Cost Analysis. Journal of Automated Reasoning 46(2), 161–203 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Amato, G., Parton, M., Scozzari, F.: From Object Fields to Local Variables: A Practical Approach to Field-Sensitive Analysis. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 100–116. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Albert, E., Arenas, P., Genaim, S., Puebla, G., Román-Díez, G.: Conditional Termination of Loops over Heap-allocated Data. Science of Computer Programming 92, 2–24 (2014)CrossRefGoogle Scholar
  6. 6.
    Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of Object-Oriented Bytecode Programs. Theoretical Computer Science 413(1), 142–159 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Albert, E., Correas, J., Puebla, G., Román-Díez, G.: Quantified Abstract Configurations of Distributed Systems. Formal Aspects of Computing (2015),
  8. 8.
    Albert, E., Correas, J., Román-Díez, G.: Peak Cost Analysis of Distributed Systems. In: Müller-Olm, M., Seidl, H. (eds.) Static Analysis. LNCS, vol. 8723, pp. 18–33. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Albert, E., Fernández, J.C., Román-Díez, G.: Non-Cumulative Resource Analysis. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 85–100. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  10. 10.
    Albert, E., Flores-Montoya, A.E., Genaim, S.: Analysis of May-Happen-in-Parallel in Concurrent Objects. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS, vol. 7273, pp. 35–51. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Albert, E., Flores-Montoya, A., Genaim, S., Martin-Martin, E.: Termination and Cost Analysis of Loops with Concurrent Interleavings. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 349–364. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Albert, E., Genaim, S., Gómez-Zamalloa, M.: Parametric Inference of Memory Requirements for Garbage Collected Languages. In: Proc. of ISMM 2010, pp. 121–130. ACM (2010)Google Scholar
  13. 13.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: POPL, pp. 84–96 (1978)Google Scholar
  14. 14.
    Debray, S.K., Lin, N.W.: Cost Analysis of Logic Programs. ACM Transactions on Programming Languages and Systems 15(5), 826–875 (1993)CrossRefGoogle Scholar
  15. 15.
    Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: Precise and Efficient Static Estimation of Program Computational Complexity. In: Proc. of POPL 2009, pp. 127–139. ACM (2009)Google Scholar
  16. 16.
    Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis. In: Proc. of POPL 2011, pp. 357–370. ACM (2011)Google Scholar
  17. 17.
    Hoffmann, J., Shao, Z.: Type-Based Amortized Resource Analysis with Integers and Arrays. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 152–168. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order functional programs. In: Proc. of POPL 2013, pp. 185–197. ACM (2003)Google Scholar
  19. 19.
    Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley (1996)Google Scholar
  20. 20.
    Morgan, R.G., Jarvis, S.A.: Profiling Large-Scale Lazy Functional Programs. Journal of Functional Programing 8(3), 201–237 (1998)CrossRefzbMATHGoogle Scholar
  21. 21.
    Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Sands, D.: A Naïve Time Analysis and its Theory of Cost Equivalence. Journal of Logic and Computation 5(4), 495–541 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Wegbreit, B.: Mechanical Program Analysis. Communications of the ACM 18(9), 528–539 (1975)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Elvira Albert
    • 1
  • Puri Arenas
    • 1
  • Jesús Correas
    • 1
  • Samir Genaim
    • 1
  • Miguel Gómez-Zamalloa
    • 1
  • Enrique Martin-Martin
    • 1
  • Germán Puebla
    • 2
  • Guillermo Román-Díez
    • 2
  1. 1.DSICComplutense University of MadridMadridSpain
  2. 2.DLSIISTechnical University of MadridMadridSpain

Personalised recommendations