Advertisement

Matching of Events and Activities - An Approach Using Declarative Modeling Constraints

  • Thomas BaierEmail author
  • Claudio Di Ciccio
  • Jan Mendling
  • Mathias Weske
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 214)

Abstract

Nowadays, business processes are increasingly supported by IT services that produce massive amounts of event data during the execution of a process. This event data can be used to analyze the process using process mining techniques to discover the real process, measure conformance to a given process model, or to enhance existing models with performance information. Mapping the produced events to activities of a given process model is essential for conformance checking, annotation and understanding of process mining results. In order to accomplish this mapping with low manual effort, we developed a semi-automatic approach that maps events to activities using the solution of a corresponding constraint satisfaction problem. The approach extracts Declare constraints from both the log and the model to build matching constraints to efficiently reduce the number of possible mappings. The evaluation with an industry process model collection and simulated event logs demonstrates the effectiveness of the approach and its robustness towards non-conforming execution logs.

Keywords

Process mining Event mapping Business process intelligence Constraint satisfaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN, LNCS, vol. 1248, pp. 407–426. Springer (1997)Google Scholar
  2. 2.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes, 1st edn. Springer (2011)Google Scholar
  3. 3.
    van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow Language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  4. 4.
    Baier, T., Mendling, J.: Bridging Abstraction Layers in Process Mining: Event to Activity Mapping. In: Nurcan, S., Proper, H.A., Soffer, P., Krogstie, J., Schmidt, R., Halpin, T., Bider, I. (eds.) BPMDS 2013 and EMMSAD 2013. LNBIP, vol. 147, pp. 109–123. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Baier, T., Mendling, J., Weske, M.: Bridging abstraction layers in process mining. Information Systems 46, 123–139 (2014)CrossRefGoogle Scholar
  6. 6.
    Baier, T., Rogge-Solti, A., Weske, M., Mendling, J.: Matching of Events and Activities - An Approach Based on Constraint Satisfaction. In: Frank, U., Loucopoulos, P., Pastor, Ó., Petrounias, I. (eds.) PoEM 2014. LNBIP, vol. 197, pp. 58–72. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  7. 7.
    Cook, D.J., Krishnan, N.C., Rashidi, P.: Activity discovery and activity recognition: A new partnership. IEEE T. Cybernetics 43(3), 820–828 (2013)CrossRefGoogle Scholar
  8. 8.
    Di Ciccio, C., Mecella, M.: Mining artful processes from knowledge workers’ emails. IEEE Internet Computing 17(5), 10–20 (2013)CrossRefGoogle Scholar
  9. 9.
    Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes. ACM Trans. Manage. Inf. Syst. 5(4), 24:1–24:37 (2015)Google Scholar
  10. 10.
    Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of Business Process Models: Metrics and Evaluation. Information Systems 36(2), 498–516 (2011)CrossRefGoogle Scholar
  11. 11.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer (2007)Google Scholar
  12. 12.
    Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on demand: Instantaneous soundness checking of industrial business process models. Data & Knowledge Engineering 70(5), 448–466 (2011)CrossRefGoogle Scholar
  13. 13.
    Freuder, E., Mackworth, A.: Handbook of Constraint Programming, Foundations of Artificial Intelligence, vol. 2, ch. Constraint satisfaction: An emerging paradigm, pp. 13–27. Elsevier (2006)Google Scholar
  14. 14.
    Günther, C.W., van der Aalst, W.M.P.: Mining activity clusters from low-level event logs. In: BETA Working Paper Series. vol. WP 165. Eindhoven University of Technology (2006)Google Scholar
  15. 15.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  16. 16.
    Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity Mining by Global Trace Segmentation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 128–139. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  17. 17.
    Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing Recall of Process Model Matching by Improved Activity Label Matching. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  18. 18.
    Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt, H.: Probabilistic Optimization of Semantic Process Model Matching. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. 19.
    Li, J., Bose, R.P.J.C., van der Aalst, W.M.P.: Mining Context-Dependent and Interactive Business Process Maps Using Execution Patterns. In: Muehlen, M., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 109–121. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  20. 20.
    Lohmann, N., Verbeek, E., Dijkman, R.M.: Petri net transformations for business processes - a survey. Petri Nets and Other Models of Concurrency 2, 46–63 (2009)CrossRefGoogle Scholar
  21. 21.
    Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient Discovery of Understandable Declarative Process Models from Event Logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  22. 22.
    Pérez-Castillo, R., Weber, B., de Guzmán, I.G.R., Piattini, M., Pinggera, J.: Assessing event correlation in non-process-aware information systems. Software and System Modeling 13(3), 1117–1139 (2014)Google Scholar
  23. 23.
    Rogge-Solti, A., Weske, M.: Prediction of Remaining Service Execution Time Using Stochastic Petri Nets with Arbitrary Firing Delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  24. 24.
    La Rosa, M., Lux, J., Seidel, S., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-driven Configuration of Reference Process Models. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 424–438. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  25. 25.
    Weidlich, M., Dijkman, R., Mendling, J.: The ICoP Framework: Identification of Correspondences between Process Models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  26. 26.
    Weidlich, M., Dijkman, R., Weske, M.: Behaviour Equivalence and Compatibility of Business Process Models with Complex Correspondences. ComJnl (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thomas Baier
    • 1
    Email author
  • Claudio Di Ciccio
    • 2
  • Jan Mendling
    • 2
  • Mathias Weske
    • 1
  1. 1.Hasso Plattner Institute at the University of PotsdamPotsdamGermany
  2. 2.Wirtschaftsuniversität WienViennaAustria

Personalised recommendations