Advertisement

Scalable Process Discovery with Guarantees

  • Sander J. J. Leemans
  • Dirk Fahland
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 214)

Abstract

Considerable amounts of data, including process event data, are collected and stored by organisations nowadays. Discovering a process model from recorded process event data is the aim of process discovery algorithms. Many techniques have been proposed, but none combines scalability with quality guarantees, e.g. can handle billions of events or thousands of activities, and produces sound models (without deadlocks and other anomalies), and guarantees to rediscover the underlying process in some cases. In this paper, we introduce a framework for process discovery that computes a directly-follows graph by passing over the log once, and applying a divide-and-conquer strategy. Moreover, we introduce three algorithms using the framework. We experimentally show that it sacrifices little compared to algorithms that use the full event log, while it gains the ability to cope with event logs of 100,000,000 traces and processes of 10,000 activities.

Keywords

Big data Scalable process mining Block-structured process discovery Directly-follows graphs Rediscoverability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)Google Scholar
  2. 2.
    van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M.E.M., Verdonk, M.: Auditing 2.0: Using process mining to support tomorrow’s auditor. IEEE Computer 43(3), 90–93 (2010)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  4. 4.
    van der Aalst, W.M.P.: Process cubes: slicing, dicing, rolling up and drilling down event data for process mining. In: Song, M., Wynn, M.T., Liu, J. (eds.) AP-BPM 2013. LNBIP, vol. 159, pp. 1–22. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    van der Aalst, W.M.P.. In: Data Scientist: Enigneer of the Future. I-ESA, vol. 7, pp. 13–26 (2014)Google Scholar
  6. 6.
    van der Aalst, W.M.P., Weijters, A., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  7. 7.
    Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.: Alignment based precision checking. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Badouel, E.: On the \(\alpha \)-reconstructibility of workflow nets. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 128–147. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  9. 9.
    Buijs, J., van Dongen, B., van der Aalst, W.: A genetic algorithm for discovering process trees. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)Google Scholar
  10. 10.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision, generalization and simplicity in process discovery. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Control-flow discovery from event streams. In: IEEE Congress on Evolutionary Computation, pp. 2420–2427 (2014)Google Scholar
  12. 12.
    Carmona, J., Solé, M.: PMLAB: an scripting environment for process mining. In: BPM Demos. CEUR-WP, vol. 1295, p. 16 (2014)Google Scholar
  13. 13.
    Datta, S., Bhaduri, K., Giannella, C., Wolff, R., Kargupta, H.: Distributed data mining in peer-to-peer networks. IEEE Internet Computing 10(4), 18–26 (2006)CrossRefGoogle Scholar
  14. 14.
    van Dongen, B.: BPI Challenge 2012 Dataset (2012). http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
  15. 15.
    Evermann, J.: Scalable process discovery using map-reduce. In: IEEE Transactions on Services Computing (2014, to appear)Google Scholar
  16. 16.
    Günther, C., Rozinat, A.: Disco: Discover your processes. In: BPM (Demos). CEUR Workshop Proceedings, vol. 940, pp. 40–44. CEUR-WS.org (2012)Google Scholar
  17. 17.
    Hay, B., Wets, G., Vanhoof, K.: Mining navigation patterns using a sequence alignment method. Knowl. Inf. Syst. 6(2), 150–163 (2004)CrossRefGoogle Scholar
  18. 18.
    Hwong, Y., Keiren, J.J.A., Kusters, V.J.J., Leemans, S.J.J., Willemse, T.A.C.: Formalising and analysing the control software of the compact muon solenoid experiment at the large hadron collider. Sci. Comput. Program. 78(12), 2435–2452 (2013)CrossRefGoogle Scholar
  19. 19.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  20. 20.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013 Workshops. LNBIP, vol. 171, pp. 66–78. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  21. 21.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 91–110. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  22. 22.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Exploring processes and deviations. In: Fournier, F., Mendling, J. (eds.) BPM 2014 Workshops. LNBIP, vol. 202, pp. 304–316. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  23. 23.
    Redlich, D., Molka, T., Gilani, W., Blair, G., Rashid, A.: Constructs competition miner: process control-flow discovery of bp-domain constructs. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 134–150. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  24. 24.
    Redlich, D., Molka, T., Gilani, W., Blair, G.S., Rashid, A.: Scalable dynamic business process discovery with the constructs competition miner. In: SIMPDA 2014. CEUR-WP, vol. 1293, pp. 91–107 (2014)Google Scholar
  25. 25.
    Weijters, A., van der Aalst, W., de Medeiros, A.: Process mining with the heuristics miner-algorithm. BETA Working Paper series 166, Eindhoven University of Technology (2006)Google Scholar
  26. 26.
    Wen, L., van der Aalst, W., Wang, J., Sun, J.: Mining process models with non-free-choice constructs. Data Mining and Knowledge Discovery 15(2), 145–180 (2007)CrossRefGoogle Scholar
  27. 27.
    Wen, L., Wang, J., Sun, J.: Mining invisible tasks from event logs. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 358–365. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  28. 28.
    van der Werf, J., van Dongen, B., Hurkens, C., Serebrenik, A.: Process discovery using integer linear programming. Fundam. Inform. 94(3–4), 387–412 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sander J. J. Leemans
    • 1
  • Dirk Fahland
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations