Advertisement

Mining the Organisational Perspective in Agile Business Processes

  • Stefan Schönig
  • Cristina Cabanillas
  • Stefan Jablonski
  • Jan Mendling
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 214)

Abstract

Agile processes depend on human resources, decisions and expert knowledge, and they are especially versatile and comprise rather complex scenarios. Declarative, i.e., rule-based, process models are well-suited for modelling these processes. Although there are several mining techniques to discover such declarative process models from event logs, they put less emphasis on the organisational perspective, which specifies how resources are involved in the activities. As a consequence, the resulting models do not specify who should execute which task and with which constraint (like separation of duties) in mind. In this paper, we propose a process mining approach to discover resource-aware, declarative process models. Our specific contribution is the extraction of complex rules for resource assignment that integrate the control-flow and organisational perspectives. Our experiments demonstrate the expressiveness of the mined rules with a reference to the Workflow Resource Patterns and a real-world use case.

Keywords

Declarative process mining Organisational perspective Resource perspective Event log analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer (2013)Google Scholar
  2. 2.
    Jablonski, S.: MOBILE: a modular workflow model and architecture. In: Working Conference on Dynamic Modelling and Information Systems (1994)Google Scholar
  3. 3.
    van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing between flexibility and support. Computer Science - Research and Development 23(2), 99–113 (2009)CrossRefGoogle Scholar
  4. 4.
    Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: an empirical investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383–394. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  5. 5.
    Vaculín, R., Hull, R., Heath, T., Cochran, C., Nigam, A., Sukaviriya, P.: Declarative business artifact centric modeling of decision and knowledge intensive business processes. In: EDOC, pp. 151–160 (2011)Google Scholar
  6. 6.
    van der Aalst, W.: Process mining: discovery, conformance and enhancement of business processes. (2011)Google Scholar
  7. 7.
    Zeising, M., Schönig, S. Jablonski, S.: Towards a common platform for the support of routine and agile business processes. In: Collaborative Computing: Networking, Applications and Worksharing (2014)Google Scholar
  8. 8.
    Maggi, F.M., Mooij, A., van der Aalst, W.: User-guided discovery of declarative process models. In: Computational Intelligence and Data Mining, pp. 192–199 (2011)Google Scholar
  9. 9.
    Di Ciccio, C., Mecella, M.: A two-step fast algorithm for the automated discovery of declarative workflows. In: Computational Intelligence and Data Mining, pp. 135–142 (2013)Google Scholar
  10. 10.
    Maggi, F.M., Dumas, M., García-Bañuelos, L., Montali, M.: Discovering data-aware declarative process models from event logs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 81–96. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    Bose, R.P.J.C., Maggi, F.M., van der Aalst, W.M.P.: Enhancing declare maps based on event correlations. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 97–112. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Marin, M., Hull, R., Vaculín, R.: Data Centric BPM and the Emerging Case Management Standard: A Short Survey Case Management, vol. 257593Google Scholar
  13. 13.
    Leitner, M., Baumgrass, A., Schefer-Wenzl, S., Rinderle-Ma, S., Strembeck, M.: A case study on the suitability of process mining to produce current-state RBAC models. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 719–724. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Baumgrass, A., Strembeck, M.: Bridging the gap between role mining and role engineering via migration guides. Inf. Sec. Techn. Report 17(4), 148–172 (2013)CrossRefGoogle Scholar
  15. 15.
    Zhao, W., Zhao, X.: Process mining from the organizational perspective. In: Foundations of Intelligent Systems, pp. 701–708 (2014)Google Scholar
  16. 16.
    Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow resource patterns: identification, representation and tool support. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  17. 17.
    Bussler, C.: Organisationsverwaltung in Workflow-Management-Systemen. Dt. Univ.-Verlag (1998)Google Scholar
  18. 18.
    Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-organizational workflows as timed dynamic condition response graphs. J. Log. Algebr. Program. 82(5–7), 164–185 (2013)CrossRefGoogle Scholar
  19. 19.
    Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, xESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  20. 20.
    Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  21. 21.
    Bose, R.P.J.C., van der Aalst, W.M.P.: Analysis of patient treatment procedures. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 165–166. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  22. 22.
    Schönig, S., Gillitzer, F., Zeising, M., Jablonski, S.: Supporting rule-based process mining by user-guided discovery of resource-aware frequent patterns. In: ICSOC 2014 Workshops (2014) (in press)Google Scholar
  23. 23.
    Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: A knowledge-based integrated approach for discovering and repairing declare maps. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  24. 24.
    Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence 19(1), 17–37 (1982)CrossRefGoogle Scholar
  25. 25.
    JBoss Drools, T.: JBoss Drools Documentation - Chapter 7: Rule Language Reference (2013)Google Scholar
  26. 26.
    Maggi, F.M.: Declarative process mining with the declare component of ProM. In: BPM (Demos) (2013)Google Scholar
  27. 27.
    Westergaard, M., Stahl, C., Reijers, H.: UnconstrainedMiner: Efficient Discovery of Generalized Declarative Process Models. BPM Center Report, No. BPM-13-28 (2013)Google Scholar
  28. 28.
    Di Ciccio, C., Maggi, F.M., Mendling, J.: Discovering target-branched declare constraints. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 34–50. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  29. 29.
    Song, M., van der Aalst, W.: Towards comprehensive support for organizational mining. Decision Support Systems (2008)Google Scholar
  30. 30.
    Van Der Aalst, W.M., Reijers, H.A., Song, M.: Discovering Social Networks from Event Logs. CSCW 14(6), 549–593 (2005)Google Scholar
  31. 31.
    Nakatumba, J., van der Aalst, W.M.P.: Analyzing resource behavior using process mining. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 69–80. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  32. 32.
    Cabanillas, C., Knuplesch, D., Resinas, M., Reichert, M., Mendling, J., Ruiz- Cortés, A.: RALph: A Graphical Notation for Resource Assignments in Business Processes. In: CAiSE 2015, LNCS, vol. 9097, pp. 53–68. Springer, Heidelberg (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefan Schönig
    • 1
  • Cristina Cabanillas
    • 2
  • Stefan Jablonski
    • 1
  • Jan Mendling
    • 2
  1. 1.University of BayreuthBayreuthGermany
  2. 2.Vienna University of Economics and BusinessViennaAustria

Personalised recommendations