International Conference on Enterprise, Business-Process and Information Systems Modeling

CAISE 2015: Enterprise, Business-Process and Information Systems Modeling pp 447-460 | Cite as

Real-Time Design Patterns: Architectural Designs for Automatic Semi-Partitioned and Global Scheduling

  • Amina Magdich
  • Yessine Hadj Kacem
  • Adel Mahfoudhi
  • Mickaël Kerboeuf
  • Mohamed Abid
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 214)


The scheduling problem is becoming an important topic for different fields especially for Real-Time applications. Considering the complexity of Real-Time Embedded Systems (RTES) coupled with the variety of scheduling approaches and algorithms, the designer task is becoming increasingly hard. Few approaches have investigated design patterns to perform an automatic scheduling at a high-level of abstraction. However, only the partitioned scheduling that prevents task migrations has been taken into account. In this context, this paper proposes two design patterns maintaining an automatic choice of semi-partitioned and global scheduling algorithms. The Unified Modeling Language (UML) profile for the Modeling and Analysis of Real-Time Embedded systems (MARTE) is used to annotate the proposed design patterns with functional and non-functional properties.


Semi-partitioned scheduling Global scheduling Automatic scheduling MDE Design patterns MARTE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Dorin, F., Yomsi, P.M., Goossens, J., Richard, P.: Semi-partitioned hard real-time scheduling with restricted migrations upon identical multiprocessor platforms. CoRR Journal (2010)Google Scholar
  3. 3.
    Du, C., Sun, X.-H., Wu, M.: Dynamic scheduling with process migration. In: Seventh IEEE International Symposium on Cluster Computing and the Grid, CCGRID 2007, pp. 92–99, May 2007Google Scholar
  4. 4.
    Florescu, O., Voeten, J., Verhoef, M., Corporaal, H.: Reusing real-time systems design experience through modelling patterns. In: FDL, pp. 375–381. ECSI, Darmstadt, September 19–22, 2006Google Scholar
  5. 5.
    Fritzsche, R., Ristig, C., Siemers, C.: An approach and design pattern for intra-application scheduling. Technical Report IfI-10-11, Clausthal University of Technology (2010)Google Scholar
  6. 6.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-oriented Software, 1st edn. Addison-Wesley Professional, Boston (1995)Google Scholar
  7. 7.
    Gaudel, V., Singhoff, F., Plantec, A., Rubini, S., Dissaux, P., Legrand, J.: An ada design pattern recognition tool for aadl performance analysis. In: Proceedings of the 2011 Annual International Conference on Special Interest Group on the Ada Programming Language, SIGAda 2011, pp. 61–68. ACM, Denver (2011)Google Scholar
  8. 8.
    Goossens, J.: Introduction à l’ordonnancement temps réel multiprocesseur. In: Ecole d’été Temps Réel, pp. 157–166 (2007)Google Scholar
  9. 9.
    OMG (Object Management Group). A uml profile for marte: Modeling and analysis of real-time embedded systems. standard, June 2008Google Scholar
  10. 10.
    HadjKacem, Y., Mahfoudhi, A., Magdich, A., Karamti, W., Abid, M.: Using mde and priority time petri nets for the schedulability analysis of embedded systems modeled by uml activity diagrams. In: The 19th Annual IEEE International Conference and Workshops on the Engineering of Computer Based Systems (ECBS), pp. 316–323 (2012)Google Scholar
  11. 11.
    Kacem, Y.H., Mahfoudhi, A., Tmar, H., Abid, M.: From UML/MARTE to RTDT: A model driven based method for scheduling analysis and HW/SW partitioning. In: The 8th ACS/IEEE International Conference on Computer Systems and Applications, AICCSA 2010, Hammamet, Tunisia, May 16–19, 2010, pp. 1–7 (2010)Google Scholar
  12. 12.
    Konrad, S., Cheng, B.H.C., Campbell, L.A.: Object analysis patterns for embedded systems. IEEE Transactions on Software Engineering 30(12), 970–992 (2004)CrossRefGoogle Scholar
  13. 13.
    Madl, G.: Model-based Analysis of Event-driven Distributed Real-time Embedded Systems. PhD thesis, Long Beach, CA, USA (2009)Google Scholar
  14. 14.
    Magdich, A., Kacem, Y.H., Mahfoudhi, A., Kerboeuf, M.: A uml/marte-based design pattern for semi-partitioned scheduling analysis. In: The 23th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Collaborative Software Processes track (CSP). IEEE Computer Society, Juin 2014Google Scholar
  15. 15.
    Magdich, A., Kacem, Y.H., Mahfoudhi, A.: Extending UML/MARTE-GRM for integrating tasks migrations in class diagrams. In: Lee, R. (ed.) SERA 2013. SCI, vol. 496, pp. 73–84. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  16. 16.
    Magdich, A., Kacem, Y.H., Mahfoudhi, A., Abid, M.: A MARTE extension for global scheduling analysis of multiprocessor systems. In: The 23th IEEE International Symposium on Software Reliability Engineering (ISSRE), pp. 371–379. IEEE Computer Society, November 2012Google Scholar
  17. 17.
    Olteanu, A., Pop, F., Dobre, C., Cristea, V.: An adaptive scheduling approach in distributed systems. In: IEEE International Conference on Computational Photography (ICCP), pp. 435–442 (2010)Google Scholar
  18. 18.
    Schmidt, D.C.: Model-driven engineering. IEEE Computer 39, February 2006Google Scholar
  19. 19.
    Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T.: Design pattern detection using similarity scoring. IEEE Trans. Softw. Eng. 32(11), 896–909 (2006)CrossRefGoogle Scholar
  20. 20.
    Zamfirache, F., Frincu, M.: Automatic selection of scheduling algorithms based on classification models. In: International Conference on Knowledge Engineering: Principles and Techniques (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Amina Magdich
    • 1
  • Yessine Hadj Kacem
    • 2
  • Adel Mahfoudhi
    • 3
  • Mickaël Kerboeuf
    • 4
  • Mohamed Abid
    • 1
  1. 1.CES LaboratoryUniversity of Sfax, ENISSfaxTunisia
  2. 2.College of Computer ScienceKing Khalid UniversityAbhaSaudi Arabia
  3. 3.College of Computers and Information TechnologyTaif UniversityTaifSaudi Arabia
  4. 4.Lab-STICC, MOCS TeamUniversity of BrestBrestFrance

Personalised recommendations