Free Space Interference Experiments with Single Photons and Single Ions

  • Lukáš Slodička
  • Gabriel Hétet
  • Markus Hennrich
  • Rainer Blatt
Part of the Nano-Optics and Nanophotonics book series (NON)


Trapped ion crystals have proved to be one of the most viable physical implementations of quantum registers and a promising candidate for a scalable realization of quantum networks. The latter will require the development of an efficient interface between trapped ions and photons. We describe two research directions that are currently investigated to realize such photonic quantum interfaces in free space using high numerical aperture optics. The first approach investigates how strong focusing of light onto a single ion can increase the interaction strength to achieve efficient interaction between a photon and the ion. The second approach uses a probabilistic measurement on scattered photons to generate entanglement between two ions that could be used to distribute information in a quantum network. For both approaches a higher numerical aperture would increase the efficiency of the interface.


Entangle State Probe Beam Single Atom Faraday Rotation Quantum Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank all our colleagues who were involved in this work over the course of the years, in particular Nadia Röck, Philipp Schindler, Daniel Higginbottom, François Dubin, Alexander Glätzle, Muir Kumph, Gabriel Araneda, Sebastian Gerber, Daniel Rotter, Pavel Bushev, Yves Colombe, and Jürgen Eschner. The work reported in this chapter has been supported by the Austrian Science Fund FWF (SINFONIA, SFB FoQuS), by the European Union (CRYTERION), by the Institut für Quanteninformation GmbH, and a Marie Curie International Incoming Fellowship within the 8th European Framework Program. The writing of this chapter was supported by the European Research Council project QuaSIRIO.


  1. 1.
    J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    L. Duan, M. Lukin, I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    M. Brune et al., From Lamb shift to light shifts: vacuum and subphoton cavity fields measured by atomic phase sensitive detection. Phys. Rev. Lett. 72, 3339–3342 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    P.W.H. Pinkse, T. Fischer, P. Maunz, G. Rempe, Trapping an atom with single photons. Nature 404, 365–368 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    C.J. Hood, T.W. Lynn, A.C. Doherty, A.S. Parkins, H.J. Kimble, The atom-cavity microscope: Single atoms bound in orbit by single photons. Science 287, 1447–1453 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    B. Julsgaard, J. Sherson, J. Cirac, J. Fiurášek, E. Polzik, Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    D. Phillips, A. Fleischhauer, A. Mair, R. Walsworth, M. Lukin, Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Y.R.P. Sortais et al., Diffraction-limited optics for single-atom manipulation. Phys. Rev. A 75, 013406 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    M. Sondermann et al., Design of a mode converter for efficient light-atom coupling in free space. Appl. Phys. B: Lasers Opt. 89, 489–492 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    M. Tey et al., Strong interaction between light and a single trapped atom without the need for a cavity. Nat. Phys. 4, 924–927 (2008)CrossRefGoogle Scholar
  13. 13.
    G. Zumofen, N. Mojarad, V. Sandoghdar, M. Agio, Perfect reflection of light by an oscillating dipole. Phys. Rev. Lett. 101, 180404 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    I. Gerhardt et al., Strong extinction of a laser beam by a single molecule. Phys. Rev. Lett. 98, 33601 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, V. Sandoghdar, Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys. 4, 60–66 (2007)CrossRefGoogle Scholar
  16. 16.
    A.N. Vamivakas et al., Strong extinction of a far-field laser beam by a single quantum dot. Nano Lett. 7, 2892–2896 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    S.A. Aljunid et al., Phase shift of a weak coherent beam induced by a single atom. Phys. Rev. Lett. 103, 153601 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    J. Hwang et al., A single-molecule optical transistor. Nature 460, 76–80 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    L. Slodička, G. Hétet, S. Gerber, M. Hennrich, R. Blatt, Electromagnetically induced transparency from a single atom in free space. Phys. Rev. Lett. 105, 153604 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    G. Hétet, L. Slodička, M. Hennrich, R. Blatt, Single atom as a mirror of an optical cavity. Phys. Rev. Lett. 107, 133002 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    G. Hétet, L. Slodička, N. Röck, R. Blatt, Free-space read-out and control of single-ion dispersion using quantum interference. Phys. Rev. A 88, 041804 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    M. Fleischhauer, A. Imamoğlu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    K. Bergmann, H. Theuer, B. Shore, Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    M.D. Eisaman et al., Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    A.D. Boozer, A. Boca, R. Miller, T.E. Northup, H.J. Kimble, Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    M. Mücke et al., Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755–758 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    S. Ritter et al., An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    H. Häffner, C. Roos, R. Blatt, Quantum computing with trapped ions. Phys. Rep. 469, 155 (2008)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    P. Maunz et al., Quantum interference of photon pairs from two remote trapped atomic ions. Nat. Phys. 3, 538541 (2007)CrossRefGoogle Scholar
  30. 30.
    S. Gerber et al., Quantum interference from remotely trapped ions. New J. Phys. 11, 013032 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    P. Kochan, H.J. Carmichael, Photon-statistics dependence of single-atom absorption. Phys. Rev. A 50, 1700–1709 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    M.K. Tey et al., Interfacing light and single atoms with a lens. New J. Phys. 11, 043011 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    S.J. van Enk, Atoms, dipole waves, and strongly focused light beams. Phys. Rev. A 69, 043813 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    J. Eschner, C. Raab, F. Schmidt-Kaler, R. Blatt, Light interference from single atoms and their mirror images. Nature 413, 495–498 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    A. Imamoğlu, S.E. Harris, Lasers without inversion: interference of dressed lifetime-broadened states. Opt. Lett. 14, 1344–1346 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    P. Rabl, V. Steixner, P. Zoller, Quantum-limited velocity readout and quantum feedback cooling of a trapped ion via electromagnetically induced transparency. Phys. Rev. A 72, 043823 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    G. Hétet, L. Slodička, A. Glätzle, M. Hennrich, R. Blatt, QED with a spherical mirror. Phys. Rev. A 82, 063812 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    L. Jiang, J.M. Taylor, A.S. Sørensen, M.D. Lukin, Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007)Google Scholar
  39. 39.
    J.I. Cirac, A.K. Ekert, S.F. Huelga, C. Macchiavello, Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249 (1999)MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    D. Gottesman, I.L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    L.M. Duan, C. Monroe, Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    C. Cabrillo, J.I. Cirac, P. Garcia-Fernández, P. Zoller, Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    C. Simon, W.T.M. Irvine, Robust long-distance entanglement and a loophole-free Bell test with ions and photons. Phys. Rev. Lett. 91, 110405 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    C. Chou et al., Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    C. Chou et al., Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    D.L. Moehring et al., Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    S. Zippilli et al., Entanglement of distant atoms by projective measurement: the role of detection efficiency. New J. Phys. 10, 103003 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    L. Luo et al., Protocols and techniques for a scalable atom-photon quantum network. Fortschritte der Physik 57, 1133–1152 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    R. Raussendorf, H.J. Briegel, A one-way quantum computer. Phys. Rev. Lett. 86, 51885191 (2001)CrossRefGoogle Scholar
  50. 50.
    Duan, L.-M. and Raussendorf, R. Efficient quantum computation with probabilistic quantum gates. Physical Review Letters 95 (2005)Google Scholar
  51. 51.
    E.W. Streed, B.G. Norton, A. Jechow, T.J. Weinhold, D. Kielpinski, Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 106, 010502 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    E. Streed, A. Jechow, B. Norton, D. Kielpinski, Absorption imaging of a single atom. Nat. Commun. 3, 933 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    B. Darquié et al., Controlled single-photon emission from a single trapped two-level atom. Science 309, 454–456 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    S. Olmschenk et al., Quantum logic between distant trapped ions. Int. J. Quantum Inf. 8, 337–394 (2010)CrossRefGoogle Scholar
  55. 55.
    G. Shu, C.K. Chou, N. Kurz, M. Dietrich, B. Blinov, Efficient fluorescence collection and ion imaging with the “tack” ion trap. JOSA B 28, 2865–2870 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    R. Maiwald et al., Stylus ion trap for enhanced access and sensing. Nat. Phys. 5, 551–554 (2009)CrossRefGoogle Scholar
  57. 57.
    M. Stobińska, G. Alber, G. Leuchs, Perfect excitation of a matter qubit by a single photon in free space. Europhys. Lett. 86, 14007 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    S. Olmschenk et al., Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    L. Slodička et al., Atom-atom entanglement by single-photon detection. Phys. Rev. Lett. 110, 083603 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    R. Maiwald et al., Collecting more than half the fluorescence photons from a single ion. Phys. Rev. A 86, 043431 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    C.A. Sackett et al., Experimental entanglement of four particles. Nature 404, 256–259 (2000)ADSCrossRefGoogle Scholar
  62. 62.
    M.I. Shirokov, Cauchy inequality and uncertainty relations for mixed states. Int. J. Theoret. Phys. 45, 141–151 (2006)MathSciNetCrossRefGoogle Scholar
  63. 63.
    D. Kielpinski et al., A decoherence-free quantum memory using trapped ions. Science 291, 1013–1015 (2001)ADSCrossRefGoogle Scholar
  64. 64.
    C.F. Roos et al., Bell states of atoms with ultralong lifetimes and their tomographic state analysis. Phys. Rev. Lett. 92, 220402 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    L. Slodička et al., Interferometric thermometry of a single sub-Doppler-cooled atom. Phys. Rev. A 85, 043401 (2012)ADSCrossRefGoogle Scholar
  66. 66.
    Y. Wang, J. Minář, G. Hétet, V. Scarani, Quantum memory with a single two-level atom in a half cavity. Phys. Rev. A 85, 013823 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    K. Predehl et al., A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science 336, 441–444 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lukáš Slodička
    • 1
  • Gabriel Hétet
    • 2
  • Markus Hennrich
    • 3
    • 4
  • Rainer Blatt
    • 3
    • 5
  1. 1.Department of OpticsPalacký UniversityOlomoucCzech Republic
  2. 2.Laboratoire Pierre Aigrain, Ecole Normale Supérieure-PSL Research UniversityCNRS, Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris CitéParis Cedex 05France
  3. 3.University of InnsbruckInnsbruckAustria
  4. 4.Department of PhysicsStockholm UniversityStockholmSweden
  5. 5.Institute for Quantum Optics and Quantum InformationAustrian Academy of SciencesInnsbruckAustria

Personalised recommendations