Single Semiconductor Quantum Dots in Microcavities: Bright Sources of Indistinguishable Photons

  • C. Schneider
  • P. Gold
  • C.-Y. Lu
  • S. Höfling
  • J.-W. Pan
  • M. Kamp
Part of the Nano-Optics and Nanophotonics book series (NON)


In this chapter we will discuss the technology and experimental techniques to realize quantum dot (QD) single photon sources combining high outcoupling efficiencies and highest degrees of photon indistinguishability. The system, which is based on low density InAs QDs embedded in a quasi planar single sided microcavity with natural photonic traps is an ideal testbed to study quantum light emission from single QDs. We will discuss the influence of the excitation conditions on the purity of the single photon emission, and in particular on the degree of indistinguishability of the emitted photons. While high purity triggered emission of single photons is observed under all tested excitation conditions, single photon interference effects can almost vanish in experiments relying on non-resonant pumping into the quantum dot wetting layer. However, we can observe nearly perfect indistinguishability of single photons in resonance fluorescence excitation conditions, which underlines the superiority of this excitation scheme to create photon wave packets close to the Fourier limit. As a first step towards the realization of solid state quantum networks based on quantum dot single photon sources we test the overlap of photons emitted from remote QDs yielding non-postselected interference visibilities on the order of (\(\approx \)40 %) for quasi resonant excitation .


Coherence Time Distribute Bragg Reflector Quantum Repeater Single Photon Source Interference Visibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the great support of the following persons throughout the last years: S. Maier, A. Thoma, Y. He, Y.-M. He, N. Gregersen, J. Mork, J. Schary, M. Lermer, M. Wagenbrenner, L. Worschech, S. Reitzenstein and A. Forchel. We acknowledge financial support by the BMBF (Projects QuaHLRep and as well as the state of Bavaria.


  1. 1.
    P. Michler et al., A quantum dot single-photon turnstile device. Science 290, 228 (2000)CrossRefGoogle Scholar
  2. 2.
    Z.L. Yuan et al., Electrically driven single-photon source. Science 295, 102–105 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    T. Heindel et al., Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl. Phys. Lett. 96, 011107 (2010)Google Scholar
  4. 4.
    P. Michler, Single Quantum Dots (Springer, Heidelberg, 2003)Google Scholar
  5. 5.
    P. Michler, Single Semiconductor Quantum Dots (Springer, Heidelberg, 2009)CrossRefGoogle Scholar
  6. 6.
    C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, Y. Yamamoto, Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    J.W. Pan et al., Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    P. Kok et al., Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    J.L. O’Brien, Optical quantum computing. Science 318, 1567–1570 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    H.J. Briegel, W. Dur, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    J. Hofmann et al., Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    J. Nilsson et al., Quantum teleportation using a light-emitting diode. Nat. Photonics 7, 311–315 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    W.B. Gao et al., Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013)ADSGoogle Scholar
  15. 15.
    O. Gazzano et al., Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    J. Claudon et al., A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174–177 (2010)ADSGoogle Scholar
  17. 17.
    M.E. Reimer et al., Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 3, 737 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    C. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing. Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 175, 8 (1984)Google Scholar
  19. 19.
    E. Waks et al., Secure communication: quantum cryptography with a photon turnstile. Nature 420, 762–762 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    T. Heindel et al., Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range. New J. Phys. 14, 083001 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between 2 photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    J. Bylander, I. Robert-Philip, I. Abram, Interference and correlation of two independent photons. Eur. Phys. J. D 22, 295–301 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    S. Maier et al., Bright single photon source based on self-aligned quantum dot-cavity systems. Opt. Sxpress 22, 8136–8142 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    J.M. Garcia et al., Intermixing and shape changes during the formation of InAs self-assembled quantum dots. Appl. Phys. Lett. 71, 2014–2016 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    O. Schmidt, Lateral Alignment of Epitaxial Quantum Dots (Springer, Berlin, 2009)Google Scholar
  26. 26.
    C. Schneider et al., Single site-controlled in(ga)as/gaas quantum dots: growth, properties and device integration. Nanotechnology 20, 434012 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    J.M. Zajac, W. Langbein, Structure and zero-dimensional polariton spectrum of natural defects in GaAs/AlAs microcavities. Phys. Rev. B 86, 195401 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    P. Royo, R.P. Stanley, M. Ilegems, Planar dielectric microcavity light-emitting diodes: analytical analysis of the extraction efficiency. J. Appl. Phys. 90, 283–293 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    F. Ding, T. Stoeferle, L.J. Mai, A. Knoll, R.F. Mahrt, Vertical microcavities with high q and strong lateral mode confinement. Phys. Rev. B 87, 161116 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    W.L. Barnes et al., Solid-state single photon sources: light collection strategies. Eur. Phys. J. D 18, 197–210 (2002)ADSGoogle Scholar
  31. 31.
    D. Press et al., Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367–370 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    A. Muller et al., Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    S. Ates et al., Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    E.B. Flagg, S.V. Polyakov, T. Thomay, G.S. Solomon, Dynamics of nonclassical light from a single solid-state quantum emitter. Phys. Rev. Lett. 109, 163601 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    E. Flagg et al., Resonantly driven coherent oscillations in a solid-state quantum emitter. Nat. Phys. 5, 203–207 (2009)CrossRefGoogle Scholar
  36. 36.
    A.N. Vamivakas, Y. Zhao, C.-Y. Lu, M. Atatüre, Spin-resolved quantum-dot resonance fluorescence. Nat. Phys. 5, 198–202 (2009)CrossRefGoogle Scholar
  37. 37.
    Y.M. He et al., On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Y.-J. Wei et al., Deterministic and robust generation of single photons on a chip with 99.5% indistinguishability using rapid adiabatic passage (2014). arXiv preprint arXiv:1405.1991
  39. 39.
    E.B. Flagg et al., Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    R.B. Patel et al., Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photonics 4, 632–635 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    K. Konthasinghe et al., Field-field and photon-photon correlations of light scattered by two remote two-level inas quantum dots on the same substrate. Phys. Rev. Lett. 109, 237403 (2012)CrossRefGoogle Scholar
  42. 42.
    S. Reitzenstein et al., Control of the strong light-matter interaction between an elongated In\(_{0.3}\)Ga\(_{0.7}\)As quantum dot and a micropillar cavity using external magnetic fields. Phys. Rev. Lett. 103, 127401 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    T. Legero, T. Wilk, A. Kuhn, G. Rempe, Characterization of single photons using two-photon interference. Adv. At. Mol. Opt. Phys. 53, 254 (2006)ADSGoogle Scholar
  44. 44.
    Y. He et al., Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots. Phys. Rev. Lett. 111, 237403 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • C. Schneider
    • 1
  • P. Gold
    • 1
  • C.-Y. Lu
    • 1
    • 2
  • S. Höfling
    • 1
    • 3
  • J.-W. Pan
    • 1
    • 2
  • M. Kamp
    • 1
  1. 1.University of WürzburgWürzburgGermany
  2. 2.University of Science and Technology of ChinaHefeiP.R. China
  3. 3.SUPA, School of Physics and AstronomyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations