Advertisement

On the Complexity and Decidability of Some Problems Involving Shuffle

  • Joey Eremondi
  • Oscar H. Ibarra
  • Ian McQuillan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9118)

Abstract

The complexity and decidability of various decision problems involving the shuffle operation (denoted by Open image in new window ) are studied. The following three problems are all shown to be \(\mathsf{NP}\)-complete: given a nondeterministic finite automaton (\(\mathsf{NFA}\)) \(M\), and two words \(u\) and \(v\), is Open image in new window , is Open image in new window , and is Open image in new window ? It is also shown that there is a polynomial-time algorithm to determine, for \(\mathsf{NFA}\)s \(M_1, M_2\) and a deterministic pushdown automaton \(M_3\), whether Open image in new window . The same is true when \(M_1, M_2,M_3\) are one-way nondeterministic \(l\)-reversal-bounded \(k\)-counter machines, with \(M_3\) being deterministic. Other decidability and complexity results are presented for testing whether given languages \(L_1, L_2\) and \(L\) from various languages families satisfy Open image in new window .

References

  1. 1.
    Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput. Syst. Sci. 8(3), 315–332 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Berstel, J., Boasson, L.: Shuffle factorization is unique. Theoret. Comput. Sci. 273, 47–67 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Biegler, F., Daley, M., McQuillan, I.: Algorithmic decomposition of shuffle on words. Theoret. Comput. Sci. 454, 38–50 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Biegler, F., McQuillan, I.: On comparing deterministic finite automata and the shuffle of words. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 98–109. Springer, Heidelberg (2014) Google Scholar
  5. 5.
    Bordihn, H., Holzer, M., Kutrib, M.: Some non-semi-decidability problems for linear and deterministic context-free languages. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 68–79. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  6. 6.
    Buss, S., Soltys, M.: Unshuffling a square is NP-hard. J. Comput. Syst. Sci. 80(4), 766–776 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Câmpeanu, C., Salomaa, K., Vágvölgyi, S.: Shuffle quotient and decompositions. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 186–196. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  8. 8.
    Daley, M., Biegler, F., McQuillan, I.: On the shuffle automaton size for words. J. Autom. Lang. Comb. 15, 53–70 (2010)Google Scholar
  9. 9.
    Domaratzki, M.: More words on trajectories. Bull. EATCS 86, 107–145 (2005)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Eremondi, J., Ibarra, O.H., McQuillan, I.: Deletion operations on deterministic families of automata. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 388–399. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  11. 11.
    Eremondi, J., Ibarra, O.H., McQuillan, I.: Insertion operations on deterministic reversal-bounded counter machines. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 200–211. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences. W. H. Freeman and Company, New York (1979) zbMATHGoogle Scholar
  13. 13.
    Geller, M.M., Hunt III, H.B., Szymanski, T.G., Ullman, J.D.: Economy of description by parsers, dpda’s, and pda’s. Theoret. Comput. Sci. 4, 143–153 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Ginsburg, S., Spanier, E.H.: Mappings of languages by two-tape devices. J. ACM 12(3), 423–434 (1965)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Gurari, E.M., Ibarra, O.H.: The complexity of decision problems for finite-turn multicounter machines. J. Comput. Syst. Sci. 22(2), 220–229 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979) zbMATHGoogle Scholar
  17. 17.
    Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Ibarra, O.H.: Automata with reversal-bounded counters: a survey. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 5–22. Springer, Heidelberg (2014) Google Scholar
  19. 19.
    Jȩdrzejowicz, J., Szepietowski, A.: Shuffle languages are in P. Theoret. Comput. Sci. 250, 31–53 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kari, L.: On language equations with invertible operations. Theoret. Comput. Sci. 132(1–2), 129–150 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Kari, L., Konstandtinidis, S., Sosík, P.: On properties of bond-free DNA languages. Theoret. Comput. Sci. 334, 131–159 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Kari, L., Sosík, P.: Aspects of shuffle and deletion on trajectories. Theoret. Comput. Sci. 332(1–3), 47–61 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Knuth, D.E.: Seminumerical Algorithms, The Art of Computer Programming, 3rd edn. Addison-Wesley, Reading (1998)Google Scholar
  24. 24.
    Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing machines. Ann. Math. 74(3), 437–455 (1961)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Ogden, W.F., Riddle, W.E., Round, W.C.: Complexity of expressions allowing concurrency. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL 1978, pp. 185–194. ACM NY, USA (1978)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Joey Eremondi
    • 1
  • Oscar H. Ibarra
    • 2
  • Ian McQuillan
    • 3
  1. 1.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands
  2. 2.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Department of Computer ScienceUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations