Compressibility of Finite Languages by Grammars

  • Sebastian Eberhard
  • Stefan HetzlEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9118)


We consider the problem of simultaneously compressing a finite set of words by a single grammar. The central result of this paper is the construction of an incompressible sequence of finite word languages. This result is then shown to transfer to tree languages and (via a previously established connection between proof theory and formal language theory) also to formal proofs in first-order predicate logic.


Inference Rule Production Rule Regular Language Proof Theory Sequent Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Manfred Schmidt-Schauß for several helpful conversations about the topic of this paper, Werner Kuich for a number of remarks that improved the presentation of the results, and the anonymous reviewers for numerous important comments and suggestions.


  1. 1.
    Buss, S.: An Introduction to proof theory. In: Buss, S. (ed.) The Handbook of Proof Theory, pp. 2–78. Elsevier, Amsterdam (1998)Google Scholar
  2. 2.
    Buss, S.R.: On Herbrand’s theorem. In: Leivant, D. (ed.) LCC’94. LNCS, vol. 960, pp. 195–209. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  3. 3.
    Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages. In: Champarnaud, J.-M., Maurel, D., Ziadi, D. (eds.) WIA 1998. LNCS, vol. 1660, pp. 43–56. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  4. 4.
    Câmpeanu, C., Santean, N., Yu, S.: Minimal cover-automata for finite languages. Theoret. Comput. Sci. 267(1–2), 3–16 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–2576 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Université de Paris (1930)Google Scholar
  7. 7.
    Hetzl, S.: Applying tree languages in proof theory. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 301–312. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    Hetzl, S., Leitsch, A., Reis, G., Tapolczai, J., Weller, D.: Introducing quantified cuts in logic with equality. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 240–254. Springer, Heidelberg (2014) Google Scholar
  9. 9.
    Hetzl, S., Leitsch, A., Reis, G., Weller, D.: Algorithmic introduction of quantified cuts. Theoret. Comput. Sci. 549, 1–16 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Hetzl, S., Leitsch, A., Weller, D.: Towards algorithmic cut-introduction. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 228–242. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Cambridge (1979)zbMATHGoogle Scholar
  12. 12.
    Jacquemard, F., Klay, F., Vacher, C.: Rigid tree automata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 446–457. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  13. 13.
    Jacquemard, F., Klay, F., Vacher, C.: Rigid tree automata and applications. Inf. Comput. 209, 486–512 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Jeż, A.: Approximation of grammar-based compression via recompression. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 165–176. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Jeż, A.: A really simple approximation of smallest grammar. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 182–191. Springer, Heidelberg (2014) Google Scholar
  16. 16.
    Kieffer, J.C., Yang, E.H.: Grammar-based codes: a new class of universal lossless source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Data Compression Conference (DCC 1999). pp. 296–305. IEEE Computer Society (1999)Google Scholar
  18. 18.
    Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex. Cryptol. 4(2), 241–299 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences: a linear-time algorithm. J. Artif. Intell. Res. 7, 67–82 (1997)zbMATHGoogle Scholar
  20. 20.
    Orevkov, V.: Lower bounds for increasing complexity of derivations after cut elimination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta 88, 137–161 (1979)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Pudlák, P.: The Lengths of proofs. In: Buss, S. (ed.) Handbook of Proof Theory, pp. 547–637. Elsevier, Amsterdam (1998)CrossRefGoogle Scholar
  22. 22.
    Pudlák, P.: Twelve problems in proof complexity. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Computer Science – Theory and Applications. LNCS, vol. 5010, pp. 13–27. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  23. 23.
    Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theoret. Comput. Sci. 302(1–3), 211–222 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based compression. J. Discrete Algorithms 3(2–4), 416–430 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Shallit, J., Breitbart, Y.: Automaticity I: properties of a measure of descriptional complexity. J. Comput. Syst. Sci. 53, 10–25 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Shallit, J., Wang, M.W.: Automatic complexity of strings. J. Automata, Lang. Comb. 6(4), 537–554 (2001)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Statman, R.: Lower bounds on Herbrand’s theorem. Proc. Am. Math. Soc. 75, 104–107 (1979)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Storer, J.A., Szymanski, T.G.: The macro model for data compression (extended abstract). In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing (STOC ’78). pp. 30–39. ACM, New York (1978)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Discrete Mathematics and GeometryVienna University of TechnologyWienAustria

Personalised recommendations