Upper Bound on Syntactic Complexity of Suffix-Free Languages

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9118)

Abstract

We solve an open problem concerning syntactic complexity: We prove that the cardinality of the syntactic semigroup of a suffix-free language with \(n\) left quotients (that is, with state complexity \(n\)) is at most \((n-1)^{n-2}+n-2\) for \(n\geqslant 7\). Since this bound is known to be reachable, this settles the problem. We also reduce the alphabet of the witness languages reaching this bound to five letters instead of \(n+2\), and show that it cannot be any smaller. Finally, we prove that the transition semigroup of a minimal deterministic automaton accepting such a witness language is unique for each \(n\geqslant 7\).

Keywords

Regular language Suffix-free Syntactic complexity Transition semigroup Upper bound 

References

  1. 1.
    Ang, T., Brzozowski, J.: Languages convex with respect to binary relations, and their closure properties. Acta Cybernet. 19(2), 445–464 (2009)MATHMathSciNetGoogle Scholar
  2. 2.
    Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, UK (2009)CrossRefGoogle Scholar
  3. 3.
    Brzozowski, J.: Quotient complexity of regular languages. J. Autom. Lang. Comb. 15(1/2), 71–89 (2010)Google Scholar
  4. 4.
    Brzozowski, J., Li, B., Ye, Y.: Syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular langauges. Theoret. Comput. Sci. 449, 37–53 (2012)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Brzozowski, J., Szykuła, M.: Upper bound for syntactic complexity of suffix-free languages (2014). http://arxiv.org/abs/1412.2281
  6. 6.
    Brzozowski, J., Szykuła, M.: Upper bounds on syntactic complexity of left and two-sided ideals. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 13–24. Springer, Heidelberg (2014) Google Scholar
  7. 7.
    Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    Ganyushkin, O., Mazorchuk, V.: Classical Finite Transformation Semigroups: An Introduction. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  9. 9.
    Han, Y.S., Salomaa, K.: State complexity of basic operations on suffix-free regular languages. Theoret. Comput. Sci. 410(27–29), 2537–2548 (2009)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Pin, J.E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Word, Language, Grammar, vol. 1, pp. 679–746. Springer, New York (1997)CrossRefGoogle Scholar
  11. 11.
    Thierrin, G.: Convex languages. In: Nivat, M. (ed.) Automata, Languages and Programming, pp. 481–492. North-Holland, Amsterdam (1973)Google Scholar
  12. 12.
    Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234 (2001)MATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations