Quasi-Distances and Weighted Finite Automata

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9118)


We show that the neighbourhood of a regular language \(L\) with respect to an additive quasi-distance can be recognized by an additive weighted finite automaton (WFA). The size of the WFA is the same as the size of an NFA (nondeterministic finite automaton) for \(L\) and the construction gives an upper bound for the state complexity of a neighbourhood of a regular language with respect to a quasi-distance. We give a tight lower bound construction for the determinization of an additive WFA using an alphabet of size five. The previously known lower bound construction needed an alphabet that is linear in the number of states of the WFA.


Regular languages Weighted finite automata State complexity Distance measures 


  1. 1.
    Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages. J. Comput. Syst. Sci. 79, 1302–1321 (2013)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Calude, C.S., Salomaa, K., Yu, S.: Distances and quasi-distances between words. J. Univ. Comput. Sci. 8(2), 141–152 (2002)MATHMathSciNetGoogle Scholar
  3. 3.
    Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of relations. Theoret. Comput. Sci. 286, 117–138 (2002)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar
  5. 5.
    Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2009)MATHCrossRefGoogle Scholar
  6. 6.
    Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2009)MATHGoogle Scholar
  7. 7.
    Eramian, M.: Efficient simulation of nondeterministic weighted finite automata. J. Automata Lang. Comb. 9, 257–267 (2004)MATHMathSciNetGoogle Scholar
  8. 8.
    Han, Y.-S., Ko, S.-K., Salomaa, K.: The edit distance between a regular language and a context-free language. Int. J. Found. Comput. Sci. 24, 1067–1082 (2013)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata — a survey. Inf. Comput. 209, 456–470 (2011)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. J. Automata Lang. Comb. 9, 293–309 (2004)MATHMathSciNetGoogle Scholar
  11. 11.
    Konstantinidis, S.: Transducers and the properties of error detection, error-correction, and finite-delay decodability. J. Univ. Comput. Sci. 8, 278–291 (2002)MATHMathSciNetGoogle Scholar
  12. 12.
    Konstantinidis, S.: Computing the edit distance of a regular language. Inf. Comput. 205, 1307–1316 (2007)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  14. 14.
    Ng, T., Rappaport, D., Salomaa, K.: State complexity of neighbourhoods and approximate pattern matching (March 2015, Submitted for publication)Google Scholar
  15. 15.
    Pighizzini, G.: How hard is computing the edit distance? Inf. Comput. 165, 1–13 (2001)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Povarov, G.: Descriptive complexity of the Hamming neighborhood of a regular language. In: Proceedings of the 1st International Conference Language and Automata Theory and Applications, LATA 2007, pp. 509–520 (2007)Google Scholar
  17. 17.
    Salomaa, K., Schofield, P.: State complexity of additive weighted finite automata. Int. J. Found. Comput. Sci. 18(6), 1407–1416 (2007)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Schofield, P.: Error Quantification and Recognition Using Weighted Finite Automata. MSc thesis, Queen’s University, Kingston, Canada (2006)Google Scholar
  19. 19.
    Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2009)MATHGoogle Scholar
  20. 20.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations