Transducer Descriptions of DNA Code Properties and Undecidability of Antimorphic Problems

  • Lila Kari
  • Stavros Konstantinidis
  • Steffen KopeckiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9118)


This work concerns formal descriptions of DNA code properties and related (un)decidability questions. This line of research allows us to give a property as input to an algorithm, in addition to any regular language, which can then answer questions about the language and the property. Here we define DNA code properties via transducers and show that this method is strictly more expressive than that of regular trajectories, without sacrificing the efficiency of deciding the satisfaction question. We also show that the maximality question can be undecidable. Our undecidability results hold not only for the fixed DNA involution but also for any fixed antimorphic permutation. Moreover, we also show the undecidability of the antimorphic version of the Post correspondence problem, for any fixed antimorphic permutation.


Codes DNA properties Trajectories Transducers Undecidability 


  1. 1.
    Allauzen, C., Mohri, M.: Efficient algorithms for testing the twins property. J. Autom. Lang. Comb. 8(2), 117–144 (2003)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Baum, E.: DNA sequences useful for computation. In: 2nd DIMACS Workshop on DNA-based Computers, pp. 122–127. Princeton University (1996)Google Scholar
  3. 3.
    Berstel, J.: Transductions and Context-Free Languages. B.G. Teubner, Stuttgart (1979)zbMATHCrossRefGoogle Scholar
  4. 4.
    Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  5. 5.
    Domaratzki, M.: Trajectory-based codes. Acta Informatica 40, 491–527 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Domaratzki, M.: Bond-free DNA language classes. Nat. Comput. 6, 371–402 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Domaratzki, M., Salomaa, K.: Codes defined by multiple sets of trajectories. Theor. Comput. Sci. 366, 182–193 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Dudzinski, K., Konstantinidis, S.: Formal descriptions of code properties: decidability, complexity, implementation. IJFCS 23(1), 67–85 (2012)zbMATHMathSciNetGoogle Scholar
  9. 9.
    FAdo: Tools for formal languages manipulation. Accessed February 2015
  10. 10.
    Fan, C.M., Wang, J.T., Huang, C.C.: Some properties of involution binary relations. Acta Informatica (2014). doi: 10.1007/s00236-014-0208-8 Google Scholar
  11. 11.
    Genova, D., Mahalingam, K.: Generating DNA code words using forbidding and enforcing systems. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) TPNC 2012. LNCS, vol. 7505, pp. 147–160. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  12. 12.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Cambridge (1979)zbMATHGoogle Scholar
  13. 13.
    Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages. Theor. Comput. Sci. 290, 1557–1579 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Jonoska, N., Kari, L., Mahalingam, K.: Involution solid and join codes. Fundamenta Informaticae 86, 127–142 (2008)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Jonoska, N., Mahalingam, K., Chen, J.: Involution codes: with application to DNA coded languages. Nat. Comput. 4, 141–162 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jürgensen, H.: Syntactic monoids of codes. Acta Cybernetica 14, 117–133 (1999)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg and Salomaa [26], pp. 511–607Google Scholar
  18. 18.
    Kari, L., Kitto, R., Thierrin, G.: Codes, involutions, and DNA encodings. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 376–393. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  19. 19.
    Kari, L., Konstantinidis, S., Kopecki, S.: Transducer descriptions of DNA code properties and undecidability of antimorphic problems (2015). arXiv preprint arXiv:1503.00035
  20. 20.
    Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-free DNA languages. Acta Informatica 40, 119–157 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Kari, L., Konstantinidis, S., Sosík, P.: Bond-free languages: formalizations, maximality and construction methods. IJFCS 16, 1039–1070 (2005)zbMATHGoogle Scholar
  22. 22.
    Kari, L., Konstantinidis, S., Sosík, P.: On properties of bond-free DNA languages. Theor. Comput. Sci. 334, 131–159 (2005)zbMATHCrossRefGoogle Scholar
  23. 23.
    Kari, L., Sosík, P.: Aspects of shuffle and deletion on trajectories. Theor. Comput. Sci. 332, 47–61 (2005)zbMATHCrossRefGoogle Scholar
  24. 24.
    LaSer: Independent LAnguage SERver. Accessed February 2015
  25. 25.
    Mauri, G., Ferretti, C.: Word design for molecular computing: a survey. In: Chen, Junghuei, Reif, John H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 37–47. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  26. 26.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I. Springer, Berlin (1997) zbMATHGoogle Scholar
  27. 27.
    Shyr, H.: Free Monoids and Languages, 2nd edn. Hon Min Book Company, Taichung (1991)zbMATHGoogle Scholar
  28. 28.
    Shyr, H., Thierrin, G.: Codes and binary relations. In: Malliavin, M.P. (ed.) Séminaire d’Algèbre Paul Dubreil, Paris 1975–1976 (29ème Année). Lecture Notes in Mathematics, vol. 586, pp. 180–188. Springer, Berlin (1977)Google Scholar
  29. 29.
    Stockmeyer, L., Meyer, A.: Word problems requiring exponential time (preliminary report). In: Proceedings of the 5th Annual ACM Symposium on Theory of Computing, pp. 1–9. ACM (1973)Google Scholar
  30. 30.
    Yu, S.: Regular languages. In: Rozenberg and Salomaa [26], pp. 41–110Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lila Kari
    • 1
  • Stavros Konstantinidis
    • 2
  • Steffen Kopecki
    • 1
    • 2
    Email author
  1. 1.The University of Western OntarioLondonCanada
  2. 2.Saint Mary’s UniversityHalifaxCanada

Personalised recommendations