Advertisement

Unambiguity in Automata Theory

  • Thomas Colcombet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9118)

Abstract

Determinism of devices is a key aspect throughout all of computer science, simply because of considerations of efficiency of the implementation. One possible way (among others) to relax this notion is to consider unambiguous machines: non-deterministic machines that have at most one accepting run on each input.

In this paper, we will investigate the nature of unambiguity in automata theory, presenting the cases of standard finite words up to infinite trees, as well as data-words and tropical automata. Our goal is to show how this notion of unambiguity is so far not well understood, and how embarrassing open questions remain open.

Keywords

Choice Function Regular Language Input Word Finite Tree Deterministic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

I am really grateful to Jean-Éric Pin, Gabriele Puppis and Michał Skrypczak for their precious help and their discussions on the topic.

References

  1. 1.
    Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted automata? In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 482–491. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Berstel, J.: Transductions and Context-Free Languages. Leitfäden der Angewandten Mathematik und Mechanik [Guides to Applied Mathematics and Mechanics], vol. 38. B.G. Teubner, Stuttgart (1979)Google Scholar
  3. 3.
    Berstel, J., Sakarovitch, J.: Recent results in the theory of rational sets. In: Gruska, J., Rovan, B., Wiedermann, J. (eds.) Mathematical Foundations of Computer Science (Bratislava 1986). LNCS, vol. 233, pp. 15–28. Springer, Berlin (1986) CrossRefGoogle Scholar
  4. 4.
    Bilkowski, M., Skrzypczak, M.: Unambiguity and uniformization problems on infinite trees. In: CSL, volume of LIPIcs, pp. 81–100 (2013)Google Scholar
  5. 5.
    Bojańczyk, M., Lasota, S.: Fraenkel-mostowski sets with non-homogeneous atoms. In: Finkel, A., Leroux, J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 1–5. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Cadilhac, M., Finkel, A., McKenzie, P.: Unambiguous constrained automata. Int. J. Found. Comput. Sci. 24(7), 1099–1116 (2013)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Carayol, A., Löding, C.: MSO on the infinite binary tree: choice and order. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 161–176. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  8. 8.
    Carayol, A., Löding, C., Niwiński, D., Walukiewicz, I.: Choice functions and well-orderings over the infinite binary tree. Cent. Eur. J. Math. 8(4), 662–682 (2010)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Carton, O., Michel, M.: Unambiguous Büchi automata. Theor. Comput. Sci. 297(1–3), 37–81 (2003)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Colcombet, T.: Forms of determinism for automata. In: Dürr, C., Wilke, T. (eds.) STACS 2012: 29th International Symposium on Theoretical Aspects of Computer Science, Volume 14 of LIPIcs, pp. 1–23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)Google Scholar
  11. 11.
    Colcombet, T., Puppis, G., Skrypczak, M.: Unambiguous register automata. UnpublishedGoogle Scholar
  12. 12.
    Coste, F., Fredouille, D.C.: Unambiguous automata inference by means of state-merging methods. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 60–71. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  13. 13.
    Cristau, J.: Automata and temporal logic over arbitrary linear time (2011). CoRR, abs/1101.1731
  14. 14.
    Droste, M., Kuske, D.: Weighted automata. To appear in Handbook AutoMathA (2013)Google Scholar
  15. 15.
    Goldstine, J., Kappes, M., Kintala, C.M.R., Leug, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. Univ. Comput. Sci. 8, 193–234 (2002)MATHGoogle Scholar
  16. 16.
    Gurevich, Y., Shelah, S.: Rabin’s uniformization problem. J. Symb. Log. 48(4), 1105–1119 (1983)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Holzer, M., Kutrib, M.: Descriptional complexity of (un)ambiguous finite state machines and pushdown automata. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 1–23. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  18. 18.
    Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2), 329–363 (1994)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Kirsten, D., Lombardy, S.: Deciding unambiguity and sequentiality of polynomially ambiguous min-plus automata. In: 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, 26–28 February 2009, Freiburg, Germany, Proceedings, pp. 589–600 (2009)Google Scholar
  20. 20.
    Klimann, I., Lombardy, S., Mairesse, J., Prieur, C.: Deciding unambiguity and sequentiality from a finitely ambiguous max-plus automaton. Theor. Comput. Sci. 327(3), 349–373 (2004)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring is undecidable. Int. J. Algebra Comput. 4(3), 405–425 (1994)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Leiss, E.L.: Succint representation of regular languages by boolean automata. Theor. Comput. Sci. 13, 323–330 (1981)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Leung, H.: Separating exponentially ambiguous finite automata from polynomially ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found. Comput. Sci. 16(5), 975–984 (2005)MATHCrossRefGoogle Scholar
  25. 25.
    Leung, H.: Structurally unambiguous finite automata. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 198–207. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  26. 26.
    Lombardy, S., Mairesse, J.: Series which are both max-plus and min-plus are unambiguous. RAIRO - Theor. Inf. Appl. 40(1), 1–14 (2006)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Lupanov, O.B.: A comparison of two types of finite sources. Problemy Kybernetiki 9, 321–326 (1963)Google Scholar
  28. 28.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Symposium on Switching and Automata Theory, pp. 188–191. IEEE (1971)Google Scholar
  29. 29.
    Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. 20(10), 1211–1214 (1971)MATHCrossRefGoogle Scholar
  30. 30.
    Niwiński, D., Walukiewicz, I.: Ambiguity problem for automata on infinite trees (1996). unpublishedGoogle Scholar
  31. 31.
    Okhotin, A., Salomaa, K.: Descriptional complexity of unambiguous input-driven pushdown automata. Theor. Comput. Sci. 566, 1–11 (2015)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Pin, J.É., Weil, P.: Polynomial closure and unambiguous product. Theory Comput. Syst. 30(4), 383–422 (1997)MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141, 1–35 (1969)MATHMathSciNetGoogle Scholar
  34. 34.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. SIAM J. Comput. 29(4), 1118–1131 (2000)MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009) MATHCrossRefGoogle Scholar
  37. 37.
    Schmidt, E.M.: Succinctness of descriptions of context-free, regular and finite languages. Ph.D. thesis, Cornell University (1977)Google Scholar
  38. 38.
    Schützenberger, M.-P.: On the definition of a family of automata. Inf. Control 4, 245–270 (1961)MATHCrossRefGoogle Scholar
  39. 39.
    Schützenberger, M.-P.: Sur les relations fonctionnelles. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 209–213. Springer, Heidelberg (1975) Google Scholar
  40. 40.
    Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19(3), 424–437 (1990)MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Stearns, R.E., Hunt III, H.B.: On the equivalence and containment problems for unambiguous regular expressions, grammars, and automata. In: 22nd Annual Symposium on Foundations of Computer Science, Nashville, Tennessee, USA, 28–30 October 1981, pp. 74–81 (1981)Google Scholar
  42. 42.
    Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, New York (1997). Chap. 7 CrossRefGoogle Scholar
  43. 43.
    Weber, A.: Decomposing a k-valued transducer into k unambiguous ones. ITA 30(5), 379–413 (1996)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CNRSUniversité Paris 7 – Paris DiderotParisFrance

Personalised recommendations