Energy Flux Range Classification by Using a Dynamic Window Autoregressive Model

  • Pedro Antonio Gutiérrez
  • Juan Carlos Fernández
  • Mária Pérez-Ortiz
  • Laura Cornejo-Bueno
  • Enrique Alexandre-Cortizo
  • Sancho Salcedo-Sanz
  • Cesar Hervás-Martínez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9095)

Abstract

This paper tackles marine energy prediction from the classification point of view, by previously discretising the real objective variable into a set of consecutive categories or ranges. Given that the range of energy flux is enough to obtain an approximation of the amount of energy produced, the purpose of this discretisation is to simplify the prediction task. A special kind of autoregressive models are considered, where the category to be predicted depends on both the previous values of energy flux and a set of meteorological variables estimated by numerical models. Apart from this, this paper introduces two different ways of adjusting the order of the autoregressive models, one based on nested cross-validation and the other one based on a dynamic window. The results show that these kind of models are able to predict the time series in an acceptable way, and that the dynamic window procedure leads to the best accuracy without needing the additional computational cost of adjusting the order of the model.

Keywords

Wave energy prediction Multi-class classification Flux of energy Autoregressive models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bahaj, A.S.: Generating electricity from the oceans. Renewable and Sustainable Energy Reviews 15, 3399–3416 (2011)CrossRefGoogle Scholar
  2. 2.
    de O. Falcao, A.F.: Wave energy utilization: a review of the technologies. Renewable and Sustainable Energy Reviews 14, 899–918 (2010)Google Scholar
  3. 3.
    Fusco, F., Ringwood, J.V.: Short-term wave prediction for real-time control of Wave Energy Converters. IEEE Transactions on Sustainable Energy 1(2), 99–106 (2010)CrossRefGoogle Scholar
  4. 4.
    Richter, M., Magaña, M.E., Sawodny, O., Brekken, T.K.: Nonlinear Model Predictive Control of a Point Absorber Wave Energy Converter. IEEE Transactions on Sustainable Energy 4(1), 118–126 (2013)CrossRefGoogle Scholar
  5. 5.
    Waters, R., Engström, J., Isberg, J., Leijon, M.: Wave climate off the Swedish west coast. Renewable Energy 34(6), 1600–1606 (2009)CrossRefGoogle Scholar
  6. 6.
    Falnes, J.: A review of wave-energy extraction. Marine Structures 20, 185–201 (2007)CrossRefGoogle Scholar
  7. 7.
    NOAA/NDBC: National Oceanic and Atmospheric Administration (NOAA), National Data Buoy Center (NDBC). http://www.ndbc.noaa.gov
  8. 8.
    Brockwell, P.J., Davis, R.A.: Time series: theory and methods. Springer Science & Business Media (2009)Google Scholar
  9. 9.
    Guanche, Y., Mínguez, R., Méndez, F.J.: Autoregressive logistic regression applied to atmospheric circulation patterns. Climate Dynamics 42(1–2), 537–552 (2014)CrossRefGoogle Scholar
  10. 10.
    NCEP/NCAR: The NCEP/NCAR Reanalysis Project, NOAA/ESRL Physical Sciences Division. http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml
  11. 11.
    Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)Google Scholar
  12. 12.
    Deo, M.C., Naidu, C.S.: Real time wave prediction using neural networks. cean. Engineering 26(3), 191–203 (1998)Google Scholar
  13. 13.
    Agrawal, J.D., Deo, M.C.: Wave parameter estimation using neural networks. Marine Structures 17, 536–550 (2004)CrossRefGoogle Scholar
  14. 14.
    Tsai, C.P., Lin, C., Shen, J.N.: Neural network for wave forecasting among multi-stations. Ocean Engineering 29(13), 1683–1695 (2002)CrossRefGoogle Scholar
  15. 15.
    Zanaganeh, M., Jamshid-Mousavi, S., Etemad-Shahidi, A.F.: A hybrid genetic algorithm-adaptive network-based fuzzy inference system in prediction of wave parameters. Engineering Applications of Artificial Intelligence 22(8), 1194–1202 (2009)CrossRefGoogle Scholar
  16. 16.
    Castro, A., Carballo, R., Iglesias, G., Rabuñal, J.R.: Performance of artificial neural networks in nearshore wave power prediction. Applied Soft Computing 23, 194–201 (2014)CrossRefGoogle Scholar
  17. 17.
    Mahjoobi, J., Etemad-Shahidi, A.F., Kazeminezhad, M.H.: Hindcasting of wave parameters using different soft computing methods. Applied Ocean Research 30(1), 28–36 (2008)CrossRefGoogle Scholar
  18. 18.
    Mahjoobi, J., Mosabbeb, E.A.: Prediction of significant wave height using regressive support vector machines. Ocean Engineering 36, 339–347 (2009)CrossRefGoogle Scholar
  19. 19.
    Nitsure, S.P., Londhe, S.N., Khare, K.C.: Wave forecasts using wind information and genetic programming. Ocean Engineering 54, 61–69 (2012)CrossRefGoogle Scholar
  20. 20.
    Ozger, M.: Prediction of ocean wave energy from meteorological variables by fuzzy logic modeling. Expert Systems with Applications 38(5), 6269–6274 (2011)CrossRefGoogle Scholar
  21. 21.
    Reikard, G., Pinson, P., Bidlot, J.R.: Forecasting ocean wave energy: The ECMWF wave model and time series methods. Ocean Engineering 38, 1089–1099 (2011)CrossRefGoogle Scholar
  22. 22.
    Akpinar, A., Komurcu, M.I.: Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data. Applied Energy 101, 502–512 (2013)CrossRefGoogle Scholar
  23. 23.
    NDBC: National Data Buoy Center (NDBC) - Station 41013 (LLNR 815) - Frying Pan Shoals, NC Buoy. http://www.ndbc.noaa.gov/station_history.php?station=41013
  24. 24.
    NCEP/NCAR: The NCEP/NCAR Reanalysis Project, Sea Surface Level Variables 6-hourly. http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html
  25. 25.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)MATHGoogle Scholar
  26. 26.
    Scikit-Learn: Scikit-Learn, Machine Learning in Python. http://scikit-learn.org/stable/
  27. 27.
    Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for large linear classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)MATHGoogle Scholar
  28. 28.
    Liblinear: Liblinear - A Library for Large Linear Classification. http://www.csie.ntu.edu.tw/cjlin/liblinear
  29. 29.
    McCullagh, P.: Regression Models for Ordinal Data. Journal of the Royal Statistical Society. Series B (Methodological) 42(2), 109–142 (1980)MATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pedro Antonio Gutiérrez
    • 1
  • Juan Carlos Fernández
    • 1
  • Mária Pérez-Ortiz
    • 1
  • Laura Cornejo-Bueno
    • 2
  • Enrique Alexandre-Cortizo
    • 2
  • Sancho Salcedo-Sanz
    • 2
  • Cesar Hervás-Martínez
    • 1
  1. 1.Department of Computer Science and Numerical AnalysisUniversity of CordobaCordobaSpain
  2. 2.Department of Signal Processing and CommunicationsUniversidad de AlcaláMadridSpain

Personalised recommendations