Geopedology pp 227-237 | Cite as

Knowledge Is Power: Where Geopedologic Insights Are Necessary for Predictive Digital Soil Mapping

Abstract

Much of current predictive digital soil mapping (PDSM) practice relies on terrain, climate, and remote sensing-derived covariates. These are easy to obtain and can serve as proxies to soil forming factors and from these to soil properties. However, mapping of soil bodies, not properties in isolation, is what gives insight into the soil landscape. A naïve attempt at correlating environmental covariates from current terrain, vegetation density, and surrogates for climate will not succeed in the presence of unmapped variations in parent material, soil bodies, and landforms inherited from past environments. Geopedology integrates an understanding of the geomorphic conditions under which soils evolve with field observations. Examples where simplistic DSM would fail but geopedology would succeed in mapping and, even better, explaining the soil distribution are shown: exhumed paleosols, low-relief depositional environments, and recent post-glacial landscapes.

Keywords

Geomorphology Predictive digital soil mapping Soil-landscape relations Pleistocene glaciation Paleosols 

References

  1. Arrouays D, Grundy MG, Hartemink AE et al (2014) Global soil map. Adv Agron 125:93–134CrossRefGoogle Scholar
  2. Beaudette DE, O’Geen AT (2009) Soil-web: an online soil survey for California, Arizona, and Nevada. Comput Geosci 35:2119–2128. doi:10.1016/j.cageo.2008.10.016 CrossRefGoogle Scholar
  3. Berendsen HJA (2005) Landschappelijk Nederland: de fysisch-geografische regio’s, 3rd edn. Uitgeverij Van Gorcum. Assen, The NetherlandsGoogle Scholar
  4. Bishop MP, James LA, Shroder JF Jr, Walsh SJ (2012) Geospatial technologies and digital geomorphological mapping: concepts, issues and research. Geomorphology 137:5–26. doi:10.1016/j.geomorph.2011.06.027 CrossRefGoogle Scholar
  5. Dragut L, Schauppenlehner T, Muhar A et al (2009) Optimization of scale and parametrization for terrain segmentation: an application to soil-landscape modeling. Comput Geosci 35:1875–1883CrossRefGoogle Scholar
  6. Evans IS (2012) Geomorphometry and landform mapping: what is a landform? Geomorphology 137:94–106. doi:10.1016/j.geomorph.2010.09.029 CrossRefGoogle Scholar
  7. Farshad A, Shrestha DP, Moonjun R (2013) Do the emerging methods of digital soil mapping have anything to learn from the geopedologic approach to soil mapping and vice versa? In: Shahid SA, Taha FK, Abdelfattah MA (eds) Developments in soil classification, land use planning and policy implications. Springer, Dordrecht, pp 109–131CrossRefGoogle Scholar
  8. Hengl T (2013) WorldGrids. http://worldgrids.org/doku.php. Accessed 28 Nov 2014
  9. Hengl T, Reuter HI (eds) (2008) Geomorphometry: concepts, software, applications, vol 33, Developments in Soil Science. Elsevier, AmsterdamGoogle Scholar
  10. Huggett R (1998) Soil chronosequences, soil development, and soil evolution: a critical review. Catena 32(3–4):155–172CrossRefGoogle Scholar
  11. Kempen B, Brus DJ, Heuvelink GBM, Stoorvogel JJ (2009) Updating the 1:50,000 Dutch soil map using legacy soil data: a multinomial logistic regression approach. Geoderma 151:311–326CrossRefGoogle Scholar
  12. Liu F, Zhang GL, Sun YJ et al (2013) Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape. Soil Sci Soc Am J 77:1241–1253. doi:10.2136/sssaj2012.0317 CrossRefGoogle Scholar
  13. McBratney AB, Mendonça Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52CrossRefGoogle Scholar
  14. Milne G (1935) Some suggested units of classification and mapping, particularly for east African soils. Soil Res Suppl Proc Int Soc Soil Sci 4:183–198Google Scholar
  15. Phillips JD (2001) Contingency and generalization in pedology, as exemplified by texture-contrast soils. Geoderma 102(3–4):347–370CrossRefGoogle Scholar
  16. Ruhe RV, Daniels RB, Cady JG (1967) Landscape evolution and soil formation in southwestern Iowa, Technical bulletin. US Department of Agriculture, Washington, DCGoogle Scholar
  17. Scull P, Franklin J, Chadwick O, McArthur D (2003) Predictive soil mapping: a review. Prog Phys Geogr 27:171–197CrossRefGoogle Scholar
  18. Toomanian N (2013) Fundamental steps for regional and country level soil surveys. In: Shahid SA, Taha FK, Abdelfattah MA (eds) Developments in soil classification, land use planning and policy implications. Springer, Dordrecht, pp 203–227CrossRefGoogle Scholar
  19. von Engeln OD (1961) The finger lakes region: its origin and nature. Cornell University Press, IthacaGoogle Scholar
  20. Yang L, Jiao Y, Fahmy S et al (2011) Updating conventional soil maps through digital soil mapping. Soil Sci Soc Am J 75:1044–1053. doi:10.2136/sssaj2010.0002 CrossRefGoogle Scholar
  21. Zhu AX, Band LE, Dutton B, Nimlos T (1996) Automated soil inference under fuzzy logic. Ecol Model 90:123–145CrossRefGoogle Scholar
  22. Zinck JA (1987) Aplicación de la geomorfología al levantamiento de suelos en zonas aluviales y definición del ambiente geomorfológico con fines de descripción de suelos. Instituto Geográfico “Augustín Codazzi”, BogotáGoogle Scholar
  23. Zinck JA (2013) Geopedology. Elements of geomorphology for soil and geohazard studies, ITC special lecture notes series. Faculty of Geo-information Sciences and Earth Observtion, University of Twente, EnschedeGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Crop and Soil SciencesCornell UniversityIthacaUSA

Personalised recommendations