Fluidify: Decentralized Overlay Deployment in a Multi-cloud World

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9038)


As overlays get deployed in large, heterogeneous systems-of-systems with stringent performance constraints, their logical topology must exploit the locality present in the underlying physical network. In this paper, we propose a novel decentralized mechanism—Fluidify—for deploying an overlay network on top of a physical infrastructure while maximizing network locality. Fluidify uses a dual strategy that exploits both the logical links of an overlay and the physical topology of its underlying network. Simulation results show that in a network of 25,600 nodes, Fluidify is able to produce an overlay with links that are on average 94% shorter than that produced by a standard decentralized approach based on slicing, while demonstrating a sub-linear time complexity.


Overlay Network Physical Infrastructure Logical Topology Physical Topology Dual Strategy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertier, M., Frey, D., Guerraoui, R., Kermarrec, A.-M., Leroy, V.: The gossple anonymous social network. In: Gupta, I., Mascolo, C. (eds.) Middleware 2010. LNCS, vol. 6452, pp. 191–211. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Druschel, P., Hu, Y.C., Rowstron, A.: Topology-aware routing in structured peer-to-peer overlay networks. In: Schiper, A., Shvartsman, M.M.A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Future Directions in DC 2002. LNCS, vol. 2584, pp. 103–107. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value store. In: SOSP 2007 (2007)Google Scholar
  4. 4.
    Doerr, B., Elsässer, R., Fraigniaud, P.: Epidemic algorithms and processes: From theory to applications. Dagstuhl Reports 3(1), 94–110 (2013)Google Scholar
  5. 5.
    Frey, D., Guerraoui, R., Kermarrec, A.-M., Koldehofe, B., Mogensen, M., Monod, M., Quéma, V.: Heterogeneous gossip. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896, pp. 42–61. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Giakkoupis, G., Kermarrec, A.-M., Woelfel, P.: Gossip protocols for renaming and sorting. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 194–208. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Grace, P., Hughes, D., Porter, B., Blair, G.S., Coulson, G., Taiani, F.: Experiences with open overlays: A middleware approach to network heterogeneity. In: Eurosys 2008 (2008)Google Scholar
  8. 8.
    Gupta, A., Sahin, O.D., Agrawal, D., Abbadi, A.E.: Meghdoot: content-based publish/subscribe over p2p networks. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 254–273. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Jelasity, M., Kermarrec, A.M.: Ordered slicing of very large-scale overlay networks. In: P2P 2006 (2006)Google Scholar
  10. 10.
    Jelasity, M., Montresor, A., Babaoglu, O.: T-man: Gossip-based fast overlay topology construction. Comput. Netw. 53(13), 2321–2339 (2009)CrossRefMATHGoogle Scholar
  11. 11.
    Kermarrec, A.M., Triantafillou, P.: Xl peer-to-peer pub/sub systems. ACM Computing Surveys (CSUR) 46(2) (2013)Google Scholar
  12. 12.
    Krishnamurthy, B., Wang, J.: On network-aware clustering of web clients. In: SIGCOMM 2000, pp. 97–110. ACM (2000)Google Scholar
  13. 13.
    Lakshman, A., Malik, P.: Cassandra: A decentralized structured storage system. SIGOPS Oper. Syst. Rev. 44(2) (2010)Google Scholar
  14. 14.
    Leitao, J., Pereira, J., Rodrigues, L.: Epidemic broadcast trees. In: SRDS 2007 (2007)Google Scholar
  15. 15.
    Li, B., Xie, S., Qu, Y., Keung, G.Y., Lin, C., Liu, J., Zhang, X.: Inside the new coolstreaming: Principles, measurements and performance implications. In: IEEE INFOCOM 2008 (2008)Google Scholar
  16. 16.
    Matos, M., Schiavoni, V., Felber, P., Oliveira, R., Rivière, E.: Lightweight, efficient, robust epidemic dissemination. J. Parallel Distrib. Comput. 73(7), 987–999 (2013)CrossRefGoogle Scholar
  17. 17.
    Montresor, A., Jelasity, M., Babaoglu, O.: Chord on demand. In: P2P 2005 (2005)Google Scholar
  18. 18.
    Montresor, A., Jelasity, M.: Peersim: A scalable p2p simulator. In: P2P 2009 (2009)Google Scholar
  19. 19.
    Pasquet, M., Maia, F., Rivière, E., Schiavoni, V.: Autonomous multi-dimensional slicing for large-scale distributed systems. In: Magoutis, K., Pietzuch, P. (eds.) DAIS 2014. LNCS, vol. 8460, pp. 141–155. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  20. 20.
    Qiu, T., Chen, G., Ye, M., Chan, E., Zhao, B.Y.: Towards location-aware topology in both unstructured and structured p2p systems. In: ICPP, p. 30. IEEE Computer Society (2007)Google Scholar
  21. 21.
    Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Topologically-aware overlay construction and server selection. In: INFOCOM 2002, vol. 3, pp. 1190–1199 (2002)Google Scholar
  22. 22.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. SIGCOMM Comput. Commun. Rev. 31(4), 161–172 (2001)CrossRefGoogle Scholar
  23. 23.
    Lv, Q., Ratnasamy, S., Shenker, S.: Can heterogeneity make gnutella scalable? In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 94–103. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: SIGCOMM 2001 (2001)Google Scholar
  26. 26.
    Tudoran, R., Costan, A., Wang, R., Bougé, L., Antoniu, G.: Bridging Data in the Clouds: An Environment-Aware System for Geographically Distributed Data Transfers. In: IEEE/ACM CCGrid, Chicago (May 2014)Google Scholar
  27. 27.
    Voulgaris, S., van Steen, M.: Epidemic-style management of semantic overlays for content-based searching. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 1143–1152. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Waldvogel, M., Rinaldi, R.: Efficient topology-aware overlay network. In: SIGCOMM/CCR 2003 (2003)Google Scholar
  29. 29.
    Xu, Z., Tang, C., Zhang, Z.: Building topology-aware overlays using global soft-state. In: ICDSC 2003 (May 2003)Google Scholar
  30. 30.
    Zhang, X.Y., Zhang, Q., Zhang, Z., Song, G., Zhu, W.: A construction of locality-aware overlay network: moverlay and its performance. IEEE J. Sel. A. Commun. 22(1), 18–28 (2006)CrossRefGoogle Scholar
  31. 31.
    Zhao, B.Y., Kubiatowicz, J., Joseph, A.D.: Tapestry: An infrastructure for fault-tolerant wide-area location and routing. Computer 74 (2001)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  1. 1.Université de Rennes 1 - IRISARennesFrance
  2. 2.ESIRRennesFrance

Personalised recommendations